When is a property expressed in infinitary logic also pseudo-elementary?

Matthew Harrison-Trainor

University of Waterloo

This is joint work with Barbara Csima and Nancy Day.

A class \mathbb{K} of \mathcal{L} -structures is a PC-class (pseudo-elementary class) if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and an elementary first-order sentence ϕ such that

 $\mathbb{K} = \{\mathcal{M} \mid \text{there is an } \mathcal{L}^* \text{-structure } \mathcal{M}^* \text{ expanding } \mathcal{M} \text{ with } \mathcal{M}^* \vDash \phi\}.$

A class \mathbb{K} of \mathcal{L} -structures is a PC-class (pseudo-elementary class) if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and an elementary first-order sentence ϕ such that

 $\mathbb{K} = \{\mathcal{M} \mid \text{there is an } \mathcal{L}^* \text{-structure } \mathcal{M}^* \text{ expanding } \mathcal{M} \text{ with } \mathcal{M}^* \vDash \phi\}.$

Example

The class of disconnected graphs is a PC-class.

A graph G is not connected iff there is a transitive $S \supseteq E$ and a, b such that $(a, b) \notin S$.

The $\mathcal{L}_{\omega_1\omega}$ -formulas are built up inductively as follows:

- atomic formulas
- $\neg \varphi$, where φ is an $\mathcal{L}_{\omega_1 \omega}$ -formula
- $(\exists x) \varphi$, where φ is an $\mathcal{L}_{\omega_1 \omega}$ -formula
- $(\forall x) arphi$, where arphi is an $\mathcal{L}_{\omega_1 \omega}$ -formula
- if $(\varphi_i)_{i \in \omega}$ are $\mathcal{L}_{\omega_1 \omega}$ -formulas, then so is $\bigwedge_{i \in \omega} \varphi_i$
- if $(\varphi_i)_{i \in \omega}$ are $\mathcal{L}_{\omega_1 \omega}$ -formulas, then so is $\bigvee_{i \in \omega} \varphi_i$

Example

The class of disconnected graphs is also defined by the $\mathcal{L}_{\omega_{I}\omega}$ sentence:

$$\exists x_1, x_2 \bigwedge_{n \in \mathbb{N}} \forall y_1, \dots, y_n \quad \neg (x_1 E y_1 \land y_1 E y_2 \land \dots \land y_n E x_2).$$

Example

Let ϕ be a first-order sentence. The class \mathbb{K} of infinite models of ϕ is a PC-class and $\mathcal{L}_{\omega_1\omega}$ -definable.

 $\mathcal{A} \models \phi$ is infinite if and only if there is a linear order \leq on \mathcal{A} such that $(\forall x)(\exists y)[y > x]$.

 $\ensuremath{\mathbb{K}}$ also defined by the infinitary sentence

$$\phi \wedge \bigwedge_{n \in \mathbb{N}} (\exists x_0, \ldots, x_n) \left[\bigwedge_{i \neq j} x_i \neq x_j \right].$$

Example

Let ϕ be a first-order sentence. The class \mathbb{K} of infinite models of ϕ is a PC-class and $\mathcal{L}_{\omega_1\omega}$ -definable.

 $\mathcal{A} \models \phi$ is infinite if and only if there is a linear order \leq on \mathcal{A} such that $(\forall x)(\exists y)[y > x]$.

 $\ensuremath{\mathbb{K}}$ also defined by the infinitary sentence

$$\phi \wedge \bigwedge_{n \in \mathbb{N}} (\exists x_0, \ldots, x_n) \left[\bigwedge_{i \neq j} x_i \neq x_j \right].$$

Example

The class of non-well-founded linear orders is a PC-class. It is not $\mathcal{L}_{\omega_1\omega}$ -definable.

We have two extensions of elementary first-order logic in two different directions. It is natural to ask what these two extensions have in common:

Question

Characterize the classes which are both pseudo-elementary class and definable by an infinitary sentence.

There are actually four variants of pseudo-elementary classes:

- PC
- PC'
- PC_Δ
- PC[']_Δ

The Δ means that we are allowed a theory (rather than a sentence) and the ' means that we are allowed to add new sorts. The classes with ' are a little difficult to define. In any case:

Theorem (Makkai)

 PC_Δ and PC_Δ' are the same.

A class \mathbb{K} of \mathcal{L} -structures is a PC_{Δ} -class if there is a language $\mathcal{L}^* \supseteq \mathcal{L}$ and an elementary first-order theory \mathcal{T} such that

 $\mathbb{K} = \{\mathcal{M} \mid \text{there is an } \mathcal{L}^* \text{-structure } \mathcal{M}^* \text{ expanding } \mathcal{M} \text{ with } \mathcal{M}^* \vDash T\}.$

We want to know: Which classes which are both PC_Δ and $\mathcal{L}_{\omega_1\omega}\text{-elementary?}$

We have two examples so far of classes which are in this intersection:

Disconnected graphs, defined by:

$$\exists x_1, x_2 \bigwedge_{n \in \mathbb{N}} \forall y_1, \dots, y_n \quad \neg (x_1 E y_1 \land y_1 E y_2 \land \dots \land y_n E x_2).$$

Infinite models of a first-order sentence ϕ , defined by:

$$\phi \wedge \bigwedge_{n \in \mathbb{N}} (\exists x_0, \ldots, x_n) \left[\bigwedge_{i \neq j} x_i \neq x_j \right].$$

An $\mathcal{L}_{\omega_1\omega}$ -sentence φ is a conjunctive formula if it can be written in normal form without any infinite disjunctions.

More concretely, the conjunctive formulas are defined inductively as follows:

- every finitary quantifier-free sentence is a conjunctive formula
- if φ is a conjunctive formula, then so are $(\exists x)\varphi$ and $(\forall x)\varphi$
- if $(\varphi_i)_{i \in \omega}$ are conjunctive formulas, then so is $\bigwedge_{i \in \omega} \varphi_i$.

Let $\mathbb K$ be a class of structures. The following are equivalent:

- \mathbb{K} is both a PC_{Δ}-class and $\mathcal{L}_{\omega_1\omega}$ -elementary.
- \mathbb{K} is defined by a conjunctive sentence.

Lemma (Modified Interpolation Theorem)

Suppose ϕ_1 is a conjunctive sentence and ϕ_2 is an $\mathcal{L}_{\omega_1\omega}$ -sentence with $\phi_1 \models \phi_2$. These sentences may be in different languages. There is a conjunctive sentence θ such that $\phi_1 \models \theta$, $\theta \models \phi_2$, and every relation, function and constant symbol occurring in θ occurs in both ϕ_1 and ϕ_2 .

Lemma (Modified Interpolation Theorem)

Suppose ϕ_1 is a conjunctive sentence and ϕ_2 is an $\mathcal{L}_{\omega_1\omega}$ -sentence with $\phi_1 \models \phi_2$. These sentences may be in different languages. There is a conjunctive sentence θ such that $\phi_1 \models \theta$, $\theta \models \phi_2$, and every relation, function and constant symbol occurring in θ occurs in both ϕ_1 and ϕ_2 .

Corollary

Let \mathbb{K} be a class of \mathcal{L} -structures closed under isomorphism. If \mathbb{K} is both a PC_{Δ}-class and $\mathcal{L}_{\omega_1\omega}$ -elementary, then it is defined by a conjunctive sentence.

Let \mathbb{K} be a class definable by a computable conjunctive sentence in a finite language.

Then \mathbb{K} is a PC' class.

Let $\mathbb K$ be a class definable by a computable conjunctive sentence in a finite language.

Then \mathbb{K} is a PC' class.

Relativizing, and using the fact that $PC'_{\Delta} = PC_{\Delta}$,

Corollary

Let \mathbb{K} be a class definable by a conjunctive sentence. Then \mathbb{K} is a PC class.

Let $\mathbb K$ be a class definable by a computable conjunctive sentence in a finite language.

Then \mathbb{K} is a PC' class.

Relativizing, and using the fact that $PC'_{\Delta} = PC_{\Delta}$,

Corollary

Let \mathbb{K} be a class definable by a conjunctive sentence.

Then \mathbb{K} is a PC_{Δ} class.

Question

If $\mathbb K$ is both a PC-class and $\mathcal L_{\omega_1\omega}\text{-elementary}$, then is it defined by a computable conjunctive sentence?

Example

The class of graphs with no cycles of prime length is a PC' -class.

Example

The class of graphs with at least one cycle of length p for each prime p is a PC'-class.

Theorem (Mal'tsev, Tarski)

If \mathbb{K} is a PC'_{Δ} -class which is closed under substructures, then it axiomatized by a set of universal sentences.

Theorem (Mal'tsev, Tarski)

If \mathbb{K} is a PC'_{Δ} -class which is closed under substructures, then it axiomatized by a set of universal sentences.

Theorem

Let \mathbb{K} be a class of structures. The following are equivalent:

- K is a PC'-class which is closed under substructures,
- K is axiomatized by a computable universal theory.

Workshop on Computability Theory and its Applications June 4-8, 2018 University of Waterloo, ON, Canada

Organizing Committee: Laurent Bienvenu, Peter Cholak, Barbara Csima, Matthew Harrison-Trainor.

Invited plenary speakers: Damir Dzhafarov, Bjørn Kjos-Hanssen, Joseph Miller, Selwyn Ng, Jan Reimann, Richard Shore, Linda Brown Westrick.

Public lecture: Antonio Montalbán.

For more information, visit the website,:

https://cta-waterloo.sciencesconf.org/