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Prologue

§ The continuous degrees measure the computability-theoretic
content of elements of computable metric spaces.

§ They properly extend the Turing degrees and naturally embed
into the enumeration degrees.

§ In this talk we will see a few characterizations of the continuous
degrees inside the enumeration degrees.

§ Our main characterization captures the continuous degrees using
a simple structural property.

§ From this it follows that the continuous degrees are first-order
definable in the partial order of the enumeration degrees.
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The enumeration degrees

Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: A Ď ω is enumeration reducible to B Ď ω (A ďe B) if
there is a uniform way to enumerate A from an enumeration of B.

Definition. A ďe B if there is a c.e. set W such that

A “ tn : pDeq xn, ey PW and De Ď Bu,

where De is the eth finite set in a canonical enumeration.

The degree structure De induced by ďe is called the enumeration
degrees. It is an upper semi-lattice with a least element (the degree of
all c.e. sets).
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The total enumeration degrees

Proposition. A ďT B iff A‘A is B-c.e. iff A‘A ďe B ‘B.

This suggests a natural embedding of the Turing degrees into the
enumeration degrees.

Proposition. The embedding ι : DT Ñ De, defined by

ιpdT pAqq “ depA‘Aq,

preserves the order and the least upper bound (and even the jump).

Definition. The total degrees are the image of the Turing degrees
under this embedding (i.e., they are the enumeration degrees that
contain a set of the form A‘A).

It is easy to see that there are nontotal enumeration degrees. In fact,
a sufficiently generic or random A Ď ω has nontotal degree.
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Computable analysis: the real numbers

In computable analysis, all computation is grounded in computability
on 2ω (or ωω) via names.

Definition. λ : Q` Ñ Q is a name of a real x P R if for all rationals
ε ą 0 we have |λpεq ´ x| ă ε.

Names can be easily coded as binary sequences, allowing us to
transfer computability-theoretic notions. For example:

Definition. A function f : RÑ R is computable if there is a Turing
functional that takes a name for any real x P R to a name for fpxq.

§ The binary expansion of a real x is computable from every name.
(But this is nonuniform because of the dyadic rationals!)

§ The binary expansion of x computes a name for x.
§ This is the least Turing degree name for x; it is natural to take
this as the Turing degree of x.
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Computable metric spaces

Definition. A computable metric space is a metric space M together
with a countable dense sequence QM “ tqMn unPω on which the metric
is computable (as a function ω2 Ñ R).

Example. The Hilbert cube is r0, 1sω with the metric

dpα, βq “
ÿ

nPω

|αpnq ´ βpnq|{2n.

Let Qr0,1s
ω

be the sequences of rationals in r0, 1s with finite support.

Other computable metric spaces include 2ω, ωω, R, and Cr0, 1s.

Definition. λ : Q` Ñ ω is a name of a point x PM if for all
rationals ε ą 0 we have dMpx, qMλpεqq ă ε.

As before, names let us transfer computability-theoretic notions to
computable metric space.

5 / 24



Computable metric spaces

Definition. A computable metric space is a metric space M together
with a countable dense sequence QM “ tqMn unPω on which the metric
is computable (as a function ω2 Ñ R).

Example. The Hilbert cube is r0, 1sω with the metric

dpα, βq “
ÿ

nPω

|αpnq ´ βpnq|{2n.

Let Qr0,1s
ω

be the sequences of rationals in r0, 1s with finite support.

Other computable metric spaces include 2ω, ωω, R, and Cr0, 1s.

Definition. λ : Q` Ñ ω is a name of a point x PM if for all
rationals ε ą 0 we have dMpx, qMλpεqq ă ε.

As before, names let us transfer computability-theoretic notions to
computable metric space.

5 / 24



Computable metric spaces

Definition. A computable metric space is a metric space M together
with a countable dense sequence QM “ tqMn unPω on which the metric
is computable (as a function ω2 Ñ R).

Example. The Hilbert cube is r0, 1sω with the metric

dpα, βq “
ÿ

nPω

|αpnq ´ βpnq|{2n.

Let Qr0,1s
ω

be the sequences of rationals in r0, 1s with finite support.

Other computable metric spaces include 2ω, ωω, R, and Cr0, 1s.

Definition. λ : Q` Ñ ω is a name of a point x PM if for all
rationals ε ą 0 we have dMpx, qMλpεqq ă ε.

As before, names let us transfer computability-theoretic notions to
computable metric space.

5 / 24



Computable metric spaces

Definition. A computable metric space is a metric space M together
with a countable dense sequence QM “ tqMn unPω on which the metric
is computable (as a function ω2 Ñ R).

Example. The Hilbert cube is r0, 1sω with the metric

dpα, βq “
ÿ

nPω

|αpnq ´ βpnq|{2n.

Let Qr0,1s
ω

be the sequences of rationals in r0, 1s with finite support.

Other computable metric spaces include 2ω, ωω, R, and Cr0, 1s.

Definition. λ : Q` Ñ ω is a name of a point x PM if for all
rationals ε ą 0 we have dMpx, qMλpεqq ă ε.

As before, names let us transfer computability-theoretic notions to
computable metric space.

5 / 24



Computable metric spaces

Definition. A computable metric space is a metric space M together
with a countable dense sequence QM “ tqMn unPω on which the metric
is computable (as a function ω2 Ñ R).

Example. The Hilbert cube is r0, 1sω with the metric

dpα, βq “
ÿ

nPω

|αpnq ´ βpnq|{2n.

Let Qr0,1s
ω

be the sequences of rationals in r0, 1s with finite support.

Other computable metric spaces include 2ω, ωω, R, and Cr0, 1s.

Definition. λ : Q` Ñ ω is a name of a point x PM if for all
rationals ε ą 0 we have dMpx, qMλpεqq ă ε.

As before, names let us transfer computability-theoretic notions to
computable metric space.

5 / 24



The continuous degrees

Question (essentially Steffen Lempp). Do elements of
computable metric spaces have least Turing degree names?

Useful fact. If β P r0, 1sω contains no dyadic rationals, then the
sequence of binary expansions is computable from (every name for) β.
But this sequence computes a name for β, which is therefore a least
Turing degree name.

However, in general, least Turing degree names will not exist. So how
do we define the degree of a point in a computable metric space?

Definition (M. 2006). If x and y are members of (possibly
different) computable metric spaces, then x ďr y if there is a uniform
way to compute a name for x from every name for y.

This reducibility induces the continuous degrees.
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Embedding into the enumeration degrees

Proposition. Every continuous degree contains a member of Cr0, 1s
(hence the name) and a member of r0, 1sω.

For α P r0, 1sω, let

Cα “
à

iPω

tq P Q : q ă αpiqu ‘ tq P Q : q ą αpiqu.

Enumerating Cα is exactly as hard as computing a name for α. So
α ÞÑ Cα induces an embedding of the continuous degrees into the
enumeration degrees.

§ Elements of 2ω, ωω, and R are mapped onto the total degree of
their least Turing degree name (i.e., their Turing degree).

§ It turns out that x PM has nontotal (enumeration) degree iff it
has no least Turing degree name.

But why are there nontotal continuous degrees?
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Nontotal continuous degrees: quick proof

Theorem (M. 2004). There is a nontotal continuous degree.

A quick proof was found independently by Kihara & Pauly and
Mathieu Hoyrup.

Proof.

§ If x P r0, 1sω has total degree, then there is a y P 2ω and Turing
functionals Γ, Ψ that map (names of) x to (names of) y and back.

§ The subspaces on which the functions induced by Γ and Ψ are
inverses are homeomorphic (because computable functionals
induce continuous functions).

§ Subspaces of 2ω are zero dimensional, so if x P r0, 1sω has total
degree, then it is in one of countably many zero dimensional
“patches”.

§ The Hilbert cube r0, 1sω is strongly infinite dimensional, hence
not a countable union of zero dimensional subspaces.

§ So some x P r0, 1sω is not covered by one of these patches.
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Nontotal continuous degrees: neutral measures

The earliest known construction of an object of nontotal continuous
degree was given by Leonid Levin in 1976.

Definition. X P 2ω is ν-random if there is a name λ of ν such that
no ν-ML-test relative to λ covers X.

This definition is equivalent to ones of Levin 1976 and Reimann 2008.

Definition. ν is a weakly neutral measure if every X P 2ω is
ν-random.

Levin’s neutral measures satisfy a slightly stronger condition. He
constructed a neutral measure using Sperner’s lemma, a combinatorial
analogue of the Brouwer fixed point theorem.

Proposition (Day and M. 2013). If ν has Turing degree, then it
is not weakly neutral.

So we have another proof that nontotal continuous degrees exist.
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Nontotal continuous degrees: my proof

Theorem (M. 2004). There is a nontotal continuous degree.

My proof also relies on a nontrivial fact from topology, a
generalization of Brouwer’s fixed point theorem to multivalued
functions on an infinite dimensional space.

Theorem (Eilenberg and Montgomery 1946). Assume that
Ψ: r0, 1sω Ñ r0, 1sω is a multivalued function with closed graph such
that Ψpαq is nonempty and convex for each α P r0, 1sω. Then Ψ has a
fixed point α (i.e., α P Ψpαq).

I constructed such a Ψ so that the fixed points have nontotal
continuous degree, proving the theorem.

This approach gives more information because Ψ is effective enough
that (the names for) its fixed points form a Π0

1 class.

Prop. Every PA total degree bounds a nontotal continuous degree.
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Intervals containing nontotal continuous degrees

Prop. Every PA total degree bounds a nontotal continuous degree.

The reverse is also true:
Prop. Every nontotal continuous degree bounds a PA total degree.

Aside. The proof invokes topology again, this time using a
constructive counterexample of V. P. Orevkov: he gave a continuous
retraction of (the constructive points of) the unit square r0, 1s2 onto
its boundary Bpr0, 1s2q.

So a total degree a is PA if and only if it bounds a nontotal
continuous degree. Relativizing this fact we obtain:

Theorem (M. 2004). Let b ď a be total. There is a nontotal
continuous degree c P pb,aq if and only if a is PA relative to b.
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The simple structural property

Definition. An enumeration degree a is almost total if whenever
b ę a is total, a_ b is also total.

In other words, an enumeration degree is almost total if adding any
new total information takes it to a total degree.

Note. The join of any two total degrees is total, so total degrees are
almost total.

Are there nontotal almost total degrees?
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Continuous degrees are almost total

Are there nontotal almost total degrees? Yes!

Recall. If β P r0, 1sω contains no dyadic rationals, then β is
equivalent the join of the binary expansions of its coordinates, which
has total degree.

Fact (Cai, Lempp, M., Soskova 2014 (unpublished)).
Continuous enumeration degrees are almost total.

Proof. Take α P r0, 1sω and x P r0, 1s such that x ęr α. Define
β P r0, 1sω by βpnq “ pαpnq ` xq{2. Note that

§ No component of β is rational, so β has total degree.
§ α‘ x ”r β ‘ x, hence it is also total.

There are nontotal continuous degrees, so there are nontotal almost
total degrees. This is the only way we know how to produce nontotal
almost total degrees. (In particular, we have no “direct” construction.)
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Almost total degrees are continuous

The remainder is joint work with Andrews, Igusa, and Soskova.

We
will sketch the proof of:

Theorem (AIMS). Almost total degrees are continuous.

We will use a series of implications:

Almost total ùñ Uniformly codable (tbd)
ùñ Contains a holistic set (tbd)
ùñ Continuous.

Aside. We can also define a uniform version of almost totality. It is
not too difficult to prove:

Theorem (AIMS). An enumeration degree is uniformly almost
total if and only if it is continuous.
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General forcing nonsense

For almost totality, a straightforward forcing argument gives
uniformity on generics for free.

Proposition (AIMS). Assume that A ‰ H is almost total. There is
an enumeration operator ∆ such that if X is sufficiently generic, then
∆pA‘X ‘Xq is the graph of a total function with range A.

∆ must have the following properties:

1. If σ P 2ăω, then ∆pA‘ σ ‘ σq is the graph of a partial function
with range contained in A.

2. For every n P ω and σ P 2ăω, there is a τ ľ σ such that the
domain of ∆pA‘ τ ‘ τq contains n.

3. For every a P A and σ P 2ăω, there is a τ ľ σ such that the range
of ∆pA‘ τ ‘ τq contains a.
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(Uniform) Codability

Definition. Let A Ď ω. Call U Ď 2ω a Σ0
1xAy class if there is a set of

strings W ďe A, such that

U “ rW s “ tX P 2ω : pDσ PW q X ľ σu.

A Π0
1xAy class is the complement of a Σ0

1xAy class.

Note that a Π0
1

@

A‘A
D

class is just a Π0
1rAs class in the usual sense.

Definition. A Ď ω is codable if there is a nonempty Π0
1xAy class P

such that every X P P enumerates A. If there is a c.e. operator W
such that A “WX for every X P P , then A is uniformly codable.

§ Both are degree notions.
§ Every total degree is uniformly codable; indeed, tA‘Au is a

Π0
1

@

A‘A
D

class.
§ (AIMS) Codability implies uniform codability.
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Almost total implies uniformly codable

Uniform codability arose in work of Cai, Lempp, M., and Soskova
(2014, unpublished) and Kihara and Pauly.

Lemma (AIMS). If A Ď ω has almost total e-degree, then it is
uniformly codable.

Proof.
§ Take ∆ such that if X is sufficiently generic, then ∆pA‘X ‘Xq
is the graph of a total function with range A.

§ Let P Ď 2ω be the set of all B such that A Ď B and there is no
X P 2ω that causes ∆pB ‘X ‘Xq to be a proper multifunction.
(So if X is generic, then ∆pB ‘X ‘Xq “ ∆pA‘X ‘Xq.)

§ P is a Π0
1xAy class. It is nonempty because A P P .

§ If B P P , then A is the set of element in the range of
∆pB ‘ σ ‘ σq, as σ ranges over 2ăω.

§ Therefore, A is uniformly codable.
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Exploiting uniform codability

§ Assume that A is uniformly codable as witnessed by the Π0
1xAy

class P and the c.e. operator W .

Let D Ă ω be finite.

§ If D Ď A, then by compactness, there is a clopen set C Ď 2ω such
that P Ď C and p@X P Cq D ĎWX . These conditions are Σ0

1xAy.

§ If D Ę A, then for any clopen C Ď 2ω s.t. p@X P Cq D ĎWX , it
will be the case that P X C “ H. This is also Σ0

1xAy.

§ We think of clopen sets C Ď 2ω such that p@X P Cq D ĎWX as
potential witnesses that D Ď A.

§ If D Ď A, then at least one witness is verified (positively from an
enumeration of A). If D Ę A, then all witnesses are refuted (. . . ).

§ Iterating this observation, we get the notion of holistic sets.
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Holistic sets

Definition. S Ď ωăω is holistic if for every σ P ωăω,
1. p@nq σ"p2nq and σ"p2n` 1q are not both in S,
2. If σ P S, then pDnq σ"p2n` 1q P S.
3. If σ R S, then p@nq σ"p2nq P S,

Think of the n’s as indexing potential witnesses that σ P S. Either:
§ at least one witnesses is verified: pDnq σ"p2n` 1q P S,
§ or all witnesses are refuted: p@nq σ"p2nq P S.

Lemma (AIMS). If A Ď ω is uniformly codable, then there is a
holistic set S ”e A.

We don’t need it, but it is easy to show:
Proposition (AIMS). Every holistic set is uniformly codable.
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The holistic space

Definition. Let
H “ tS Ď ωăω : S is holisticu.

For each σ P ωăω, let Oσ “ tS P H : σ P Su. These sets form a
subbasis for the desired topology, i.e., their finite intersections form a
basis. We call the resulting topological space the holistic space.

This definition ensures that the degree of a point S P H, in the sense
of Kihara and Pauly, is just the enumeration degree of S.

The following is straightforward:
Fact (AIMS). H is second countable, Hausdorff, and regular.

Therefore, H satisfies the hypotheses of Urysohn’s metrization
theorem (1925–1926), so:
Fact (AIMS). H is metrizable.
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Effective Urysohn’s theorem

Theorem (Schröder 1998). Let X be a computable topological
space (which implies second countable). If X is Hausdorff and
computably regular, then there is a computable metric on X that
generates the original topology.

Fact (AIMS). H satisfies the hypotheses of Schröder’s theorem, so
it admits a computable metric d.

This metric is computable in the sense we need, i.e., if S, T P H, then
from enumerations of S and T we can compute dpS, T q.

Moreover, it is easy to produce a computable dense set of point in H.
Therefore:
Lemma (AIMS). pH, dq is a computable metric space.

Finally, we can show:
Lemma (AIMS). If S P H, then the continuous degree of S as a
point in pH, dq is the same as the enumeration degree of S.
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The main theorem

Putting it all together:

Theorem (AIMS)
Let a be an enumeration degree. The following are equivalent:

1. a is (uniformly) almost total,

2. The sets in a are (uniformly) codable,

3. a contains a holistic set,

4. a is continuous.
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Definability in the enumeration degrees

Theorem (Cai, Ganchev, Lempp, M., and Soskova 2016).
The total degrees are first order definable in the enumeration degrees
(as a partial order).

The definition is “natural”. It builds on work of Kalimullin (2003) and
Ganchev and Soskova (2015).

Therefore, the almost total degrees are definable.
Corollary (AIMS). The continuous degrees are definable in the
enumeration degrees.

Recall that if a and b are total degrees, then a is PA above b iff there
is a nontotal continuous degree c P pb,aq.

Corollary (AIMS). The relation “a is PA above b” (on total
degrees) is first order definable in the enumeration degrees.

It is not known to be definable in the Turing degrees.
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Epilogue

§ We have discussed various characterizations of the continuous
degrees inside the enumeration degrees.

§ The main one, almost totality, is a natural structural property.

§ We do not know how to directly build a nontotal almost total
degree.

§ All known constructions of nontotal continuous degrees involve a
nontrivial topological component.

§ Conversely, the fact that the Hilbert cube is not a countable
union of subspaces of Cantor space follows easily from the fact
that there is a nontotal continuous degrees in every cone.

So a purely topological fact is reflected in the structure of the
enumeration degrees.
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Thank you!


