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Definition

A set A ⊆ ω is a d.c.e. set (a difference of c.e. sets) if there is a
computable approximation {As}s∈ω with A0 = ∅, A = lims As , and
for all x , |{s | As+1(x) 6= As(x)}| ≤ 2.

D.C.E. Nondensity Theorem (Cooper, Harrington, Lachlan, Lempp,
Soare 1991)

There is a maximal incomplete d.c.e. Turing degree.
(So the 2-element chain {0 < 1} is embeddable into the d.c.e.
degrees as a final segment.)

Question

Which other finite lattices can be embedded as final segments into
the d.c.e. Turing degrees?
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Our Results
Our Conjectures

All the results below are joint work with Yiqun Liu, Yong Liu,
Selwyn Ng, Cheng Peng, Guohua Wu and Yue Yang.
All the conjectures below are mine only (especially if false!).

Theorem 1

Every finite Boolean algebra is embeddable into the d.c.e. degrees
as a final segment.

Theorem 2

The 3-element chain {0 < c < 1} is embeddable into the d.c.e.
degrees as a final segment.
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Conjecture 1

Every finite distributive lattice is embeddable into the d.c.e.
degrees as a final segment.

(So the ∀∃∀-theory of the d.c.e. degrees is undecidable.)

Conjecture 2

Every finite interval dismantlable lattice is embeddable into the
d.c.e. degrees as a final segment.

Here, a finite lattice L is interval dismantlable if there is a finite
binary tree T such that

the root λ is associated with the L-interval [0, 1], and

each note σ ∈ T associated with an interval [c , d ], say,

is a leaf if [c , d ] has only one element; or
has two successors σ̂〈0〉 and σ̂〈1〉 associated with nonempty
L-subintervals [c , d ′] and [c ′, d ], resp., partitioning [c , d ].
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Proof for 2-Element Chain
Proof for the Diamond Lattice
Proof for 3-Element Chain

We build a d.c.e. set E and a c.e. set A and ensure the following
requirements, for all d.c.e. sets U and Turing functionals Ψ:

SU : K = Γ(U ⊕ E ) or U = ∆(E )

RΨ : A 6= Ψ(E )

The typical conflict is between an R-strategy below an S-strategy
building its functional Γ: Enumerating a diagonalization witness x
into A and trying to restrain E to preserve Ψ(E ; x) = 0 can trigger
a number y entering K and requiring Γ-correction via E unless U
changes.
But then Ψ(E ; x) = 0 will be destroyed iff Γ(U ⊕ E ; y) needs to be
corrected via E iff Γ(U ⊕ E ; y) is not corrected by a U-change
iff U can be computed by E via a functional ∆ (up to the use of
Γ(U ⊕ E ; y)).
Now iterate and nest.
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Proof for 3-Element Chain

We build d.c.e. sets E , D0 and D1 and a c.e. set A and ensure the
following requirements, for all d.c.e. sets U and functionals Ψ:

SU,λ : D0 = Γλ(U ⊕ E ) or U = ∆λ(E ⊕ D1)

SU,〈0〉 : K = Γ〈0〉(U ⊕ E ⊕ D0) or U = ∆〈0〉(E ⊕ D0)

SU,〈1〉 : D1 = Γ〈1〉(U ⊕ E ) or U = ∆〈1〉(E )

RΨ,0 : D0 6= Ψ(E ⊕ D1)

RΨ,1 : D1 6= Ψ(E ⊕ D0)

The S-strategy first builds Γλ and Γ〈0〉.
A lower-priority RΨ,0-strategy may kill Γλ and Γ〈0〉 and build ∆λ

and Γ〈1〉. (A later RΨ,1-strategy may kill Γ〈1〉 and build ∆〈1〉.)
A lower-priority RΨ,1-strategy may kill Γ〈0〉 and build ∆〈0〉.
(A later RΨ,0-strategy may kill Γλ and ∆〈0〉 and build ∆λ and Γ〈1〉.
An even later RΨ,1-strategy may kill Γ〈1〉 and build ∆〈1〉.)
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Proof for 2-Element Chain
Proof for the Diamond Lattice
Proof for 3-Element Chain

We build d.c.e. sets E and D and a c.e. set A and ensure the
following requirements, for all d.c.e. sets U and functionals Ψ:

SU,λ : D = Γλ(U ⊕ E ) or U = ∆λ(E )

SU,〈0〉 : K = Γ〈0〉(U ⊕ E ) or U = ∆〈0〉(E ⊕ D)

RΨ,λ : D 6= Ψ(E )

RΨ,〈1〉 : A 6= Ψ(E ⊕ D)

The S-strategy first builds Γλ and Γ〈0〉.
A lower-priority RΨ,λ-strategy may kill Γλ and Γ〈0〉 and build ∆λ.
A lower-priority RΨ,〈1〉-strategy may kill Γ〈0〉 and build ∆〈0〉.
(A later RΨ,λ-strategy may kill Γλ and ∆〈0〉 and build ∆λ.)
The new feature is the conflict between toggling D against
U-changes, and keeping diagonalization witnesses in D; with two
S-requirements above, this causes a serious conflict that requires
multiple attempts at building Γ’s and ∆’s.
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RΨ,〈1〉 : A 6= Ψ(E ⊕ D)

The S-strategy first builds Γλ and Γ〈0〉.
A lower-priority RΨ,λ-strategy may kill Γλ and Γ〈0〉 and build ∆λ.

A lower-priority RΨ,〈1〉-strategy may kill Γ〈0〉 and build ∆〈0〉.
(A later RΨ,λ-strategy may kill Γλ and ∆〈0〉 and build ∆λ.)
The new feature is the conflict between toggling D against
U-changes, and keeping diagonalization witnesses in D; with two
S-requirements above, this causes a serious conflict that requires
multiple attempts at building Γ’s and ∆’s.
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