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Algorithmic Information (Kolmogorov Complexity)

The Kolmogorov complexity of a string x ∈ {0, 1}∗ is

K(x) = min
{
|π|
∣∣π ∈ {0, 1}∗ and U(π) = x

}
,

where U is a universal Turing machine.

It matters little (small additive constant) which U is chosen
for this.
K(x) = amount of algorithmic information in x.
K(x) ≤ |x|+ o(|x|).
x is “random” if K(x) ≈ |x|.
Routine coding extends this to K(x) for x ∈ N, x ∈ Q,
x ∈ Qn, etc.
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Dimensions of Points

Work in Euclidean space Rn.

The Kolmogorov complexity of a set E ⊆ Qn is

K(E) = min{K(q) | q ∈ E} .

(Shen and Vereschagin 2002)

The Kolmogorov complexity of a set E ⊆ Rn is

K(E) = K(E ∩Qn) .

Note that
E ⊆ F ⇒ K(E) ≥ K(F ) .
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Dimensions of Points

Let x ∈ Rn and r ∈ N. The Kolmogorov complexity of x at
precision r is

Kr(x) = K
(
B2−r (x)

)
,

i.e., the number of bits required to specify some rational point
q ∈ Qn such that |q − x| ≤ 2−r.



Dimensions of Points

For x ∈ Rn,
dim(x) = lim inf

r→∞
Kr(x)
r

.

Easy fact. 0 ≤ dim(x) ≤ n, and there are uncountably many
points of each dimension in this interval.

Old fact (J. Lutz ’00 + Hitchcock ’03). If E ⊆ Rn is a union of
Π0

1 sets, then
dimH(E) = sup

x∈E
dim(x) .

classical Hausdorff
(fractal) dimension

dimensions of
individual points

∴ Dimensions of points are geometrically meaningful.
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Dimensions of Points

For x ∈ Rn,

Dim(x) = lim sup
r→∞

Kr(x)
r

. (strong dimension)

dim(x) is the “Σ0
1 version” of dimH . (Hausdorff dimension)

Dim(x) is the “Σ0
1 version” of dimP . (packing dimension)
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Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, STACS ’17)
For every E ⊆ Rn,

dimH(E) = min
A⊆N

sup
x∈E

dimA(x) .

∴ In order to prove a lower bound

dimH(E) ≥ α ,

it suffices to show that

(∀A ⊆ N)(∀ε > 0)(∃x ∈ E) dimA(x) ≥ α− ε

or, if you’re lucky, that

(∀A ⊆ N)(∃x ∈ E) dimA(x) ≥ α .
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Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, STACS ’17)
For every E ⊆ Rn,

dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .



Kakeya Sets in R2

A Kakeya set in Rn is a set K ⊆ Rn that contains a unit segment
in every direction.

Theorem (≈ Besicovitch 1919). There exist Kakeya sets of
Lebesgue measure (n-dimensional volume) 0.

Theorem (Davies 1971). Every Kakeya set in R2 has Hausdorff
dimension 2.

Kakeya Conjecture. Every Kakeya set in Rn has Hausdorff
dimension n.

An important open problem for n ≥ 3.
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Kakeya Sets in R2

J. Lutz and N. Lutz (STACS ’17). The Point-to-Set Principle gives
a new, information-theoretic proof of

Davies’s Theorem. Every Kakeya set in R2 has Hausdorff
dimension 2.

The new proof is more informative than Davies’s proof.

It doesn’t seem to help in Rn for n ≥ 3.
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Dimensions of Points on y = mx + b

Question (J. Lutz, early 2000s). Is there a line y = mx+ b on
which every point has dimension 1?

Theorem (N. Lutz and D. Stull, TAMC ’17). For all m, b, x ∈ R,

dim(x,mx+ b) ≥ dimm,b(x) + min{dim(m, b), dimm,b(x)} .

In particular, for almost every x ∈ R,

dim(x,mx+ b) = 1 + min{dim(m, b), 1} .

Corollary. For every m, b ∈ R there exist x1, x2 ∈ R such that

dim(x1,mx1 + b)− dim(x2,mx2 + b) ≥ 1 .

∴ The answer to the above question is “No!”
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Generalized Furstenberg sets

Recall that a Kakeya set in R2 is a set K ⊆ R2 that contains a
unit segment in every direction.

For α ∈ (0, 1], a set E ⊆ R2 is α-Furstenberg if, for every e ∈ S1

(= the unit circle in R2), there is a line Le in direction e such that
dimH(Le ∩ E) ≥ α.

Definition (Molter and Rela 2012)
For α, β ∈ (0, 1], a set E ⊆ R2 is (α, β)-generalized Furstenberg if
there is a set J ⊆ S1 such that dimH(J) ≥ β and, for every e ∈ J ,
there is a line Le in direction e such that dimH(Le ∩ E) ≥ α.
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Generalized Furstenberg sets

Theorem (probably Furstenberg and Katznelson)
Fore α ∈ (0, 1], every α-Furstenberg set E ⊆ R2 satisfies

dimH(E) ≥ α+ max
{1

2 , α
}
.

Note that Davies’s theorem follows from the case α = 1.

Theorem (Molter and Rela 2012)
For α, β ∈ (0, 1], every (α, β)-generalized Furstenberg set E ⊆ R2

satisfies
dimH(E) ≥ α+ max

{
β

2 , α+ β − 1
}
.

Note that the previous theorem is the case β = 1.
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Generalized Furstenberg sets

Theorem (N. Lutz and D. Stull, TAMC ’17)
For α, β ∈ (0, 1], every (α, β)-generalized Furstenberg set E ⊆ R2

satisfies
dimH(E) ≥ α+ min{β, α} .

Note that this improves on the theorem of Molter and Rela exactly
when α < 1, β < 1, and β < 2α. Hence it doesn’t improve the
bound on α-Furstenberg sets.

The proof is easy using the
(nontrivial) y = mx+ b bound that we just saw and the
Point-to-Set Principle.

It is the first use of algorithmic fractal dimensions to prove a new
theorem in classical fractal geometry!
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Intersections and Products of Fractals

The following are fundamental, nontrivial, textbook theorems of
fractal geometry.
Product Formula (Marstrand 1954). For all sets E ⊆ Rm and
F ⊆ Rn,

dimH(E × F ) ≥ dimH(E) + dimH(F ) .

Intersection Formula (Kahane 1986; Mattila 1984, 1985). For all
Borel sets E,F ⊆ Rn and almost every z ∈ Rn,

dimH(E ∩ (F + z)) ≤ max{0,dimH(E × F )− n} .

Note: The product formula was known earlier with extra assumptions on E and
F . Marstrand deployed nontrivial machinery to prove it for arbitrary sets.
Textbooks usually just prove it for Borel sets.



Intersections and Products of Fractals

Theorem (N. Lutz, MFCS ’17)
The Intersection Formula holds for all sets E,F ⊆ Rn.

The proof uses the Point-to-Set Principle. This is the second use
of algorithmic fractal dimensions to prove a new theorem in (very)
classical fractal geometry!

This paper also uses a similar method to give a much simpler proof
of the general Product Formula, along with analogous results for
packing dimension.
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Pointwise Dimensions

Classical fractal geometry has a pointwise notion of dimension.

An outer measure on Rn is a function ν : P(Rn)→ [0,∞]
satisfying

ν(∅) = 0,
E ⊆ F ⇒ ν(E) ≤ ν(F ), and

E ⊆
∞⋃
k=0

Ek ⇒ ν(E) ≤
∞∑
k=0

Ek .

An outer measure ν on Rn is
finite if ν(Rn) <∞, and
locally finite if every x ∈ Rn has a neighborhood N with
ν(N) <∞.
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Pointwise Dimensions

Definition
Let ν be a locally finite outer measure on Rn, and let x ∈ Rn. The
lower and upper pointwise dimensions of ν at x are

dimν(x) = lim inf
r→∞

log 1
ν(B2−r (x))

r

and

Dimν(x) = lim sup
r→∞

log 1
ν(B2−r (x))

r
,

respectively.

Are these in any way related to the algorithmic dimensions dim(x)
and Dim(x)?
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Pointwise Dimensions

Yes, with a very non-classical choice of the outer measure!

Definition (N. Lutz, arXiv ’16)
For each E ⊆ Rn, let

κ(E) = 2−K(E) .

Observations (N. Lutz, arXiv ’16)
1. κ is a finite outer measure on Rn.
2. For all x ∈ Rn, dim(x) = dimκ(x) and Dim(x) = Dimκ(x).
3. This relativizes and interacts informatively with the

Point-to-Set Principle.
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Thank you!


