Computability and incomputability of projection functions in Euclidean space

Alberto Marcone (joint work with Guido Gherardi)

Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università di Udine Italy alberto.marcone@uniud.it http://www.dimi.uniud.it/marcone

> Computability Theory Workshop January 8–12, 2018 Oberwolfach

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Projecting in Euclidean space

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Projecting a point over a non-empty subset of the Euclidean space is an operation deeply grounded in our geometrical intuition of the spatial continuum, and has many important applications in mathematics.

Projecting in Euclidean space

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Projecting a point over a non-empty subset of the Euclidean space is an operation deeply grounded in our geometrical intuition of the spatial continuum, and has many important applications in mathematics.

Given $x \in \mathbb{R}^n$ and $A \subseteq \mathbb{R}^n$ with $A \neq \emptyset$ we want to find $y \in A$ such that d(x,y) = d(x,A).

When A is closed y does exist, although in general is not unique.

Projecting in Euclidean space

Projecting a point over a non-empty subset of the Euclidean space is an operation deeply grounded in our geometrical intuition of the spatial continuum, and has many important applications in mathematics.

Given $x \in \mathbb{R}^n$ and $A \subseteq \mathbb{R}^n$ with $A \neq \emptyset$ we want to find $y \in A$ such that d(x,y) = d(x,A).

When A is closed y does exist, although in general is not unique.

Does the intuitive, even empirical, naturalness of this problem correspond to an algorithmic simplicity of solution?

1 Computing with reals and closed sets

2 Weihrauch reducibility

3 Projection operators

Computable partial functions from $\mathbb{N}^{\mathbb{N}}$ to $\mathbb{N}^{\mathbb{N}}$

A partial function $F : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable if there is an oracle Turing machine T such that for every $p \in \operatorname{dom}(F)$ the function computed by T with oracle p is total and coincides with F(p).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

These are also known as Lachlan functionals.

Computable partial functions from $\mathbb{N}^{\mathbb{N}}$ to $\mathbb{N}^{\mathbb{N}}$

A partial function $F : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable if there is an oracle Turing machine T such that for every $p \in \operatorname{dom}(F)$ the function computed by T with oracle p is total and coincides with F(p).

These are also known as Lachlan functionals.

Notice that every computable partial function is continuous.

Represented spaces

A representation σ_X of a set X is a surjective partial function $\sigma_X : \subseteq \mathbb{N}^{\mathbb{N}} \to X$.

The pair (X, σ_X) is a represented space.

If $x \in X$ a σ_X -name for x is any $p \in \mathbb{N}^{\mathbb{N}}$ such that $\sigma_X(p) = x$.

Represented spaces

A representation σ_X of a set X is a surjective partial function $\sigma_X : \subseteq \mathbb{N}^{\mathbb{N}} \to X$.

The pair (X, σ_X) is a represented space.

- If $x \in X$ a σ_X -name for x is any $p \in \mathbb{N}^{\mathbb{N}}$ such that $\sigma_X(p) = x$.
- $x \in X$ is computable (w.r.t. σ_X) if it has a computable σ_X -name.

Represented spaces

A representation σ_X of a set X is a surjective partial function $\sigma_X : \subseteq \mathbb{N}^{\mathbb{N}} \to X$.

The pair (X, σ_X) is a represented space.

If $x \in X$ a σ_X -name for x is any $p \in \mathbb{N}^{\mathbb{N}}$ such that $\sigma_X(p) = x$.

 $x \in X$ is computable (w.r.t. σ_X) if it has a computable σ_X -name.

Representations are analogous to the codings used in reverse mathematics to speak about various mathematical objects in subsystems of second order arithmetic.

Computable partial functions between represented spaces

If (X, σ_X) and (Y, σ_Y) are represented spaces and $f : \subseteq X \rightrightarrows Y$ we say that f is computable if there exists a computable $F : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that $\sigma_Y(F(p)) \in f(\sigma_X(p))$ whenever $f(\sigma_X(p))$ is defined, i.e. p is a name for an element of dom(f). Such an F is called a realizer of f.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Computable partial functions between represented spaces

If (X, σ_X) and (Y, σ_Y) are represented spaces and $f : \subseteq X \rightrightarrows Y$ we say that f is computable if there exists a computable $F : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that $\sigma_Y(F(p)) \in f(\sigma_X(p))$ whenever $f(\sigma_X(p))$ is defined, i.e. p is a name for an element of dom(f). Such an F is called a realizer of f.

Notice that different names of the same $x \in dom(f)$ might be mapped by F to names of different elements of f(x).

Let (X, D, d) be a computable metric space.

Let (X, D, d) be a computable metric space.

Cauchy representation of $X: p \in \mathbb{N}^{\mathbb{N}}$ is a name for $x \in X$ if plists a sequence $(x_i) \subseteq D$ such that $d(x_i, x_{i+1}) \leq 2^{-i}$ for every i and $\lim x_i = x$.

Let (X, D, d) be a computable metric space.

Cauchy representation of X: $p \in \mathbb{N}^{\mathbb{N}}$ is a name for $x \in X$ if p lists a sequence $(x_i) \subseteq D$ such that $d(x_i, x_{i+1}) \leq 2^{-i}$ for every i and $\lim x_i = x$.

negative representation of the set $\mathcal{A}_{-}(X)$ of closed subsets of X: $p \in \mathbb{N}^{\mathbb{N}}$ is a name for the closed set A if p lists a sequence of open balls with center in D and rational radius whose union is $X \setminus A$.

Let (X, D, d) be a computable metric space.

Cauchy representation of X: $p \in \mathbb{N}^{\mathbb{N}}$ is a name for $x \in X$ if p lists a sequence $(x_i) \subseteq D$ such that $d(x_i, x_{i+1}) \leq 2^{-i}$ for every i and $\lim x_i = x$.

negative representation of the set $\mathcal{A}_{-}(X)$ of closed subsets of X: $p \in \mathbb{N}^{\mathbb{N}}$ is a name for the closed set A if p lists a sequence of open balls with center in D and rational radius whose union is $X \setminus A$.

positive representation of the set $\mathcal{A}_+(X)$ of closed subsets of X: $p \in \mathbb{N}^{\mathbb{N}}$ is a name for the closed set A if p lists a dense sequence in A.

Let (X, D, d) be a computable metric space.

Cauchy representation of $X: p \in \mathbb{N}^{\mathbb{N}}$ is a name for $x \in X$ if plists a sequence $(x_i) \subseteq D$ such that $d(x_i, x_{i+1}) \leq 2^{-i}$ for every i and $\lim x_i = x$.

negative representation of the set $\mathcal{A}_{-}(X)$ of closed subsets of X: $p \in \mathbb{N}^{\mathbb{N}}$ is a name for the closed set A if p lists a sequence of open balls with center in D and rational radius whose union is $X \setminus A$.

positive representation of the set $\mathcal{A}_+(X)$ of closed subsets of X: $p \in \mathbb{N}^{\mathbb{N}}$ is a name for the closed set A if p lists a dense sequence in A.

total representation of the set $\mathcal{A}(X)$ of closed subsets of X: $p = p_0 \oplus p_1 \in \mathbb{N}^{\mathbb{N}}$ is a name for the closed set A if p_0 is a name for $A \in \mathcal{A}_-(X)$ and p_1 is a name for $A \in \mathcal{A}_+(X)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let (X, D, d) be a computable metric space. If $A \subseteq X$ is closed is important for us to compute the distance function $x \mapsto d(x, A)$.

Let (X, D, d) be a computable metric space. If $A \subseteq X$ is closed is important for us to compute the distance function $x \mapsto d(x, A)$.

• if $A \in \mathcal{A}_{-}(X)$ then we can approximate d(x, A) from below;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let (X, D, d) be a computable metric space.

If $A \subseteq X$ is closed is important for us to compute the distance function $x \mapsto d(x, A)$.

- if $A \in \mathcal{A}_{-}(X)$ then we can approximate d(x, A) from below;
- if $A \in \mathcal{A}_+(X)$ then we can approximate d(x, A) from above;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let (X, D, d) be a computable metric space.

If $A \subseteq X$ is closed is important for us to compute the distance function $x \mapsto d(x, A)$.

- if $A \in \mathcal{A}_{-}(X)$ then we can approximate d(x, A) from below;
- if $A \in \mathcal{A}_+(X)$ then we can approximate d(x, A) from above;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• if $A \in \mathcal{A}(X)$ then we can compute d(x, A).

Weihrauch reducibility

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

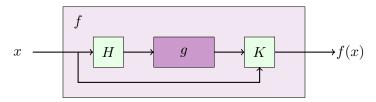
Let $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$ be partial multi-valued functions between represented spaces.

Weihrauch reducibility

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

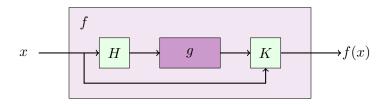
Let $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$ be partial multi-valued functions between represented spaces.

f is Weihrauch reducible to g, $f \leq_W g$, if there are computable $H : \subseteq X \rightrightarrows Z$ and $K : \subseteq X \times W \rightrightarrows Y$ such that $K(x, gH(x)) \subseteq f(x)$ for all $x \in \text{dom}(f)$:



In other words, for all $x \in \text{dom}(f)$, we have $H(x) \subseteq \text{dom}(g)$ and $K(x, w) \in f(x)$ for every $w \in g(H(x))$.

Weihrauch reducibility



 $f\leq_{\rm W} g$ means that the problem of computing f can be computably and uniformly solved by using in each instance a single computation of g:

H modifies the input of f to feed it to g, while K, using also the original input, transforms the output of g into the correct output of f.

The Weihrauch lattice

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 \leq_W is reflexive and transitive and induces the equivalence relation $\equiv_W.$

The \equiv_{W} -equivalence classes are called Weihrauch degrees.

The partial order on the sets of Weihrauch degrees is a distributive bounded lattice with several natural and useful algebraic operations: the Weihrauch lattice.

$$\begin{split} & \lim: \subseteq (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ maps a convergent sequence in Baire space to} \\ & \text{ its limit, and corresponds to } 0'. \end{split}$$

- $$\begin{split} & \mathsf{lim}: \subseteq (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ maps a convergent sequence in Baire space to} \\ & \text{ its limit, and corresponds to } 0'. \end{split}$$
- $\mathsf{C}_X:\subseteq\mathcal{A}_-(X)\rightrightarrows X \text{ is the choice function for the computable}\\ \text{metric space } X\text{: it picks from a nonempty closed set}\\ \text{in } X \text{ one of its elements.} \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $$\begin{split} & \lim: \subseteq (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ maps a convergent sequence in Baire space to} \\ & \text{ its limit, and corresponds to } 0'. \end{split}$$
- $C_X : \subseteq A_-(X) \Rightarrow X$ is the choice function for the computable metric space X: it picks from a nonempty closed set in X one of its elements.

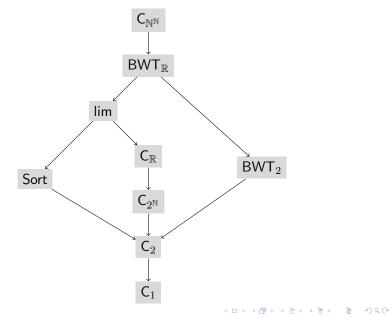
 $\mathsf{BWT}_X : \subseteq X^{\mathbb{N}} \rightrightarrows X$ for X a computable metric space is the multi-valued function that associates to a sequence (x_n) with compact closure the set of its cluster points.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- $$\begin{split} & \lim: \subseteq (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ maps a convergent sequence in Baire space to} \\ & \text{ its limit, and corresponds to } 0'. \end{split}$$
- $C_X : \subseteq A_-(X) \Rightarrow X$ is the choice function for the computable metric space X: it picks from a nonempty closed set in X one of its elements.
- $\mathsf{BWT}_X : \subseteq X^{\mathbb{N}} \rightrightarrows X$ for X a computable metric space is the multi-valued function that associates to a sequence (x_n) with compact closure the set of its cluster points.
- $\begin{array}{l} \mathsf{Sort}: 2^{\mathbb{N}} \to 2^{\mathbb{N}} \; \text{ maps } p \; \mathsf{to} \; 0^n 1^\omega \; \mathsf{if} \; |\{ \; i \mid p(i) = 0 \; \}| = n \; \mathsf{and} \; \mathsf{to} \; 0^\omega \\ & \mathsf{if} \; p \; \mathsf{has infinitely many } \; 0\mathsf{'s.} \end{array}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A picture



Exact projections

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let X be a computable metric space. The (exact) negative, positive and total projection operators on X are the partial multi-valued functions Proj_X^- , Proj_X^+ and Proj_X which associate to every $x \in X$ (with Cauchy representation) and every closed $A \neq \emptyset$ (with negative, positive and total representation, respectively) the set

$$\{\,y\in A\mid d(x,y)=d(x,A)\,\}.$$

Exact projections

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let X be a computable metric space. The (exact) negative, positive and total projection operators on X are the partial multi-valued functions Proj_X^- , Proj_X^+ and Proj_X which associate to every $x \in X$ (with Cauchy representation) and every closed $A \neq \emptyset$ (with negative, positive and total representation, respectively) the set

$$\{\,y\in A\mid d(x,y)=d(x,A)\,\}.$$

$$\operatorname{Proj}_{X}^{-}:\subseteq X \times \mathcal{A}_{-}(X) \rightrightarrows X,$$

$$\operatorname{Proj}_{X}^{+}:\subseteq X \times \mathcal{A}_{+}(X) \rightrightarrows X,$$

$$\operatorname{Proj}_{X}:\subseteq X \times \mathcal{A}(X) \rightrightarrows X$$

Approximate projections

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let X be a computable metric space and fix $\varepsilon>0.$ The $\varepsilon\text{-approximate negative, positive and total projection operators on <math display="inline">X$

are the partial multi-valued functions ε - Proj_X^- , ε - Proj_X^+ and ε - Proj_X which associate to every $x \in X$ (with Cauchy representation) and every closed $A \neq \emptyset$ (with negative, positive and total representation, respectively) the set

$$\{\,y\in A\mid d(x,y)\leq (1+\varepsilon)d(x,A)\,\}.$$

Approximate projections

Let X be a computable metric space and fix $\varepsilon > 0$.

The $\varepsilon\text{-approximate}$ negative, positive and total projection operators on X

are the partial multi-valued functions ε - Proj_X^- , ε - Proj_X^+ and ε - Proj_X which associate to every $x \in X$ (with Cauchy representation) and every closed $A \neq \emptyset$ (with negative, positive and total representation, respectively) the set

$$\{\,y\in A\mid d(x,y)\leq (1+\varepsilon)d(x,A)\,\}.$$

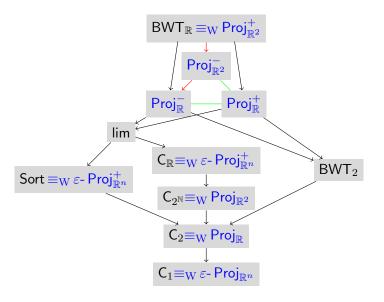
$$\begin{split} &\varepsilon\text{-}\operatorname{Proj}_X^-:\subseteq X\times\mathcal{A}_-(X)\rightrightarrows X,\\ &\varepsilon\text{-}\operatorname{Proj}_X^+:\subseteq X\times\mathcal{A}_+(X)\rightrightarrows X,\\ &\varepsilon\text{-}\operatorname{Proj}_X:\subseteq X\times\mathcal{A}(X)\rightrightarrows X \end{split}$$

Summary of results

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Proj.	Repr.	Dim.	Weihrauch degree
Exact	negative	n = 1	$>_{\mathrm{W}} lim$, $>_{\mathrm{W}} BWT_2$, $<_{\mathrm{W}} BWT_{\mathbb{R}}$
		$n \ge 2$	$>_{\mathrm{W}} lim$, $>_{\mathrm{W}} BWT_2$, $\leq_{\mathrm{W}} BWT_{\mathbb{R}}$
	positive	n = 1	$>_{\mathrm{W}} lim$, $>_{\mathrm{W}} BWT_2$, $<_{\mathrm{W}} BWT_{\mathbb{R}}$
		$n \ge 2$	$\equiv_{\mathrm{W}} BWT_{\mathbb{R}}$
	total	n = 1	$\equiv_{\mathrm{W}} C_2$
		$n \ge 2$	$\equiv_{\mathrm{W}}C_{2^{\mathbb{N}}}$
Approx.	negative	$n \ge 1$	$\equiv_{\mathrm{W}} C_{\mathbb{R}}$
	positive	$n \ge 1$	$\equiv_{\mathrm{W}} Sort$
	total	$n \ge 1$	computable

The projections picture



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Thank you for your attention!

(ロ)、(型)、(E)、(E)、 E) の(()

http://lc18.uniud.it/

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで