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Projecting in Euclidean space

Projecting a point over a non-empty subset of the Euclidean space
is an operation deeply grounded in our geometrical intuition of the
spatial continuum, and has many important applications in
mathematics.

Given x ∈ Rn and A ⊆ Rn with A 6= ∅ we want to find y ∈ A such
that d(x, y) = d(x,A).

When A is closed y does exist, although in general is not unique.

Does the intuitive, even empirical, naturalness of this problem
correspond to an algorithmic simplicity of solution?
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Computable partial functions from NN

to NN

A partial function F : ⊆NN → NN is computable if there is an
oracle Turing machine T such that for every p ∈ dom(F ) the
function computed by T with oracle p is total and coincides with
F (p).

These are also known as Lachlan functionals.

Notice that every computable partial function is continuous.
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Represented spaces

A representation σX of a set X is a surjective partial function
σX : ⊆NN → X.

The pair (X,σX) is a represented space.

If x ∈ X a σX -name for x is any p ∈ NN such that σX(p) = x.

x ∈ X is computable (w.r.t. σX) if it has a computable σX -name.

Representations are analogous to the codings used in reverse
mathematics to speak about various mathematical objects in
subsystems of second order arithmetic.
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Computable partial functions between
represented spaces

If (X,σX) and (Y, σY ) are represented spaces and f : ⊆X ⇒ Y
we say that f is computable if there exists a computable
F : ⊆NN → NN such that σY (F (p)) ∈ f(σX(p)) whenever
f(σX(p)) is defined, i.e. p is a name for an element of dom(f).

Such an F is called a realizer of f .

Notice that different names of the same x ∈ dom(f) might be
mapped by F to names of different elements of f(x).
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Some examples of representations
Let (X,D, d) be a computable metric space.

Cauchy representation of X: p ∈ NN is a name for x ∈ X if p
lists a sequence (xi) ⊆ D such that d(xi, xi+1) ≤ 2−i

for every i and limxi = x.

negative representation of the set A−(X) of closed subsets of X:
p ∈ NN is a name for the closed set A if p lists a
sequence of open balls with center in D and rational
radius whose union is X \A.

positive representation of the set A+(X) of closed subsets of X:
p ∈ NN is a name for the closed set A if p lists a
dense sequence in A.

total representation of the set A(X) of closed subsets of X:
p = p0 ⊕ p1 ∈ NN is a name for the closed set A if p0
is a name for A ∈ A−(X) and p1 is a name for
A ∈ A+(X).
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Representations of closed sets and
distance

Let (X,D, d) be a computable metric space.

If A ⊆ X is closed is important for us to compute the distance
function x 7→ d(x,A).

• if A ∈ A−(X) then we can approximate d(x,A) from below;

• if A ∈ A+(X) then we can approximate d(x,A) from above;

• if A ∈ A(X) then we can compute d(x,A).
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Weihrauch reducibility

Let f : ⊆X ⇒ Y and g : ⊆Z ⇒W be partial multi-valued
functions between represented spaces.

f is Weihrauch reducible to g, f ≤W g, if there are computable
H : ⊆X ⇒ Z and K : ⊆X ×W ⇒ Y such that
K(x, gH(x)) ⊆ f(x) for all x ∈ dom(f):

H Kg

f

x f(x)

In other words, for all x ∈ dom(f), we have H(x) ⊆ dom(g) and
K(x,w) ∈ f(x) for every w ∈ g(H(x)).
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Weihrauch reducibility

H Kg

f

x f(x)

f ≤W g means that the problem of computing f can be
computably and uniformly solved by using in each instance a single
computation of g:

H modifies the input of f to feed it to g, while K, using also the
original input, transforms the output of g into the correct output
of f .



The Weihrauch lattice

≤W is reflexive and transitive and induces the equivalence relation
≡W.

The ≡W-equivalence classes are called Weihrauch degrees.

The partial order on the sets of Weihrauch degrees is a distributive
bounded lattice with several natural and useful algebraic
operations: the Weihrauch lattice.



Some milestones in the Weihrauch
lattice

lim : ⊆(NN)N → NN maps a convergent sequence in Baire space to
its limit, and corresponds to 0′.

CX : ⊆A−(X) ⇒ X is the choice function for the computable
metric space X: it picks from a nonempty closed set
in X one of its elements.

BWTX : ⊆XN ⇒ X for X a computable metric space is the
multi-valued function that associates to a sequence
(xn) with compact closure the set of its cluster
points.

Sort : 2N → 2N maps p to 0n1ω if |{ i | p(i) = 0 }| = n and to 0ω

if p has infinitely many 0’s.
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Exact projections

Let X be a computable metric space.
The (exact) negative, positive and total projection operators on X
are the partial multi-valued functions Proj−X , Proj+X and ProjX
which associate to every x ∈ X (with Cauchy representation) and
every closed A 6= ∅ (with negative, positive and total
representation, respectively) the set

{ y ∈ A | d(x, y) = d(x,A) }.

Proj−X :⊆X ×A−(X) ⇒ X,

Proj+X :⊆X ×A+(X) ⇒ X,

ProjX :⊆X ×A(X) ⇒ X
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Approximate projections

Let X be a computable metric space and fix ε > 0.
The ε-approximate negative, positive and total projection operators
on X
are the partial multi-valued functions ε- Proj−X , ε- Proj+X and
ε- ProjX which associate to every x ∈ X (with Cauchy
representation) and every closed A 6= ∅ (with negative, positive
and total representation, respectively) the set

{ y ∈ A | d(x, y) ≤ (1 + ε)d(x,A) }.

ε- Proj−X :⊆X ×A−(X) ⇒ X,

ε- Proj+X :⊆X ×A+(X) ⇒ X,

ε- ProjX :⊆X ×A(X) ⇒ X
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Summary of results

Proj. Repr. Dim. Weihrauch degree

Exact

negative
n = 1 >W lim, >W BWT2, <W BWTR
n ≥ 2 >W lim, >W BWT2, ≤W BWTR

positive
n = 1 >W lim, >W BWT2, <W BWTR
n ≥ 2 ≡W BWTR

total
n = 1 ≡W C2

n ≥ 2 ≡W C2N

Approx.
negative n ≥ 1 ≡W CR
positive n ≥ 1 ≡W Sort

total n ≥ 1 computable



The projections picture

C1≡W ε- ProjRn

C2≡W ProjR

C2N≡W ProjR2

CR≡W ε- Proj+Rn

Sort≡W ε- Proj+Rn

lim

BWT2

BWTR≡W Proj+R2

Proj−R Proj+R

Proj−R2



Thank you for your attention!
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