Martingales and Restricted Ratio Betting

Sumedh Masulkar, Keng-Meng Ng, Satyadev Nandakumar

January 11, 2018

Table of contents

[Motivation](#page-2-0)

[Single Ratios](#page-12-0)

[Multiple Ratios](#page-17-0)

[Success versus strong success](#page-20-0)

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Motivation

Definition

A martingale $d : \Sigma^* \to [0, \infty)$ is a function such that

$$
d(\lambda) = 1
$$

$$
d(w) = d(w0) + d(w1) \quad \forall w \in \Sigma^*
$$

A martingale d succeeds on $\omega \in \Sigma^{\infty}$, written $\omega \in S^{\infty}[d]$, if

$$
\limsup_{n\to\infty}d(\omega[0\ldots n-1])=\infty.
$$

Restricting the power of martingales

Question How does the power of the martingales vary if we restrict the allowed bets?

KO KKOK KEK KEK LE I KORO

Restricting the power of martingales

Question How does the power of the martingales vary if we restrict the allowed bets?

examples of restrictions

- 1. restricting the range to rationals,
- 2. restricting wagers to integers, to a finite set of values etc. This is a restriction on $d(wb) - d(w)$, $w \in \Sigma^*$, $b \in \Sigma$.

KORK ERKER ADE YOUR

Restricting the power of martingales

Question How does the power of the martingales vary if we restrict the allowed bets?

examples of restrictions

- 1. restricting the range to rationals,
- 2. restricting wagers to integers, to a finite set of values etc. This is a restriction on $d(wb) - d(w)$, $w \in \Sigma^*$, $b \in \Sigma$.

Restricted wagers are investigated in Bienvenu, Stephan, Teutsch 2012, Teutsch 2014, and in Bavly, Peretz 2015.

KORKAR KERKER EL VOLO

KO KKOK KEK KEK LE I KORO

What about restrictions on the ratios $d(wb)/d(w)$?

What about restrictions on the ratios $d(wb)/d(w)$?

Definition (Ambos-Spies, Mayordomo, Wang, Zheng)

A martingale is *simple* if there is a rational number $q \in (0, 1)$ such that

$$
d(wb) \in \{d(w), (1+q)d(w), (1-q)d(w)\}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

A sequence $\omega \in \Sigma^{\infty}$ is *simply random* if and only if no simple computable martingale succeeds on it.

What about restrictions on the ratios $d(wb)/d(w)$?

Definition (Ambos-Spies, Mayordomo, Wang, Zheng)

A martingale is *simple* if there is a rational number $q \in (0, 1)$ such that

$$
d(wb) \in \{d(w), (1+q)d(w), (1-q)d(w)\}.
$$

A sequence $\omega \in \Sigma^{\infty}$ is *simply random* if and only if no simple computable martingale succeeds on it.

Theorem (Ambos-Spies, Mayordomo, Wang, Zheng)

A sequence ω is Church-stochastic if and only if it is simply random.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

What about restrictions on the ratios $d(wb)/d(w)$?

Definition (Ambos-Spies, Mayordomo, Wang, Zheng)

A martingale is *simple* if there is a rational number $q \in (0, 1)$ such that

$$
d(wb) \in \{d(w), (1+q)d(w), (1-q)d(w)\}.
$$

A sequence $\omega \in \Sigma^{\infty}$ is *simply random* if and only if no simple computable martingale succeeds on it.

Theorem (Ambos-Spies, Mayordomo, Wang, Zheng)

A sequence ω is Church-stochastic if and only if it is simply random.

(Masulkar, Nandakumar, Ng)

If we forbid even bets, then the set of random sequences depends on the allowed ratios of betting.

KID KA KERKER KID KO

Question

Let A be a finite set of computable numbers in $(0, 1)$. An A-martingale is a martingale whose ratios of bets $d(wb)/d(w)$, $w \in \Sigma^*$, $b \in \Sigma$, are values in A or $2 - A$. Note that $1 \notin A$.

Question

Let A be a finite set of computable numbers in $(0, 1)$. An A-martingale is a martingale whose ratios of bets $d(wb)/d(w)$, $w \in \Sigma^*$, $b \in \Sigma$, are values in A or $2 - A$.

Note that $1 \notin A$.

We say that a finite set of ratios B dominates a finite set of ratios A if for every sequence ω that some A-martingale succeeds on, there is some B martingale which succeeds on ω .

Theorem (Masulkar, Nandakumar, Ng)

A finite set of ratios B dominates another finite set of ratios A if and only if max $A <$ max B.

Single ratio vs. Single ratio

Lemma

Let
$$
A = \{a\}
$$
 and $B = \{b\}$, with $0 < a < b < 1$. Then $S^{\infty}[A] \subseteq S^{\infty}[B]$.

K ロ X K 메 X K B X X B X X D X O Q Q O

Single ratio vs. Single ratio

Lemma

Let
$$
A = \{a\}
$$
 and $B = \{b\}$, with $0 < a < b < 1$. Then $S^{\infty}[A] \subseteq S^{\infty}[B]$.

Suppose d is an A-martingale that succeeds on ω . Then the B-martingale d' which "imitates" d succeeds on ω : There is a constant $c > 0$ such that

$$
d(\omega[0\ldots n])=a^k(2-a)^{n-k}>N,
$$

then

$$
d'(\omega[0\ldots n])=b^k(2-b)^{n-k}>N^c.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Strict Domination

Lemma

Suppose $A = \{a\}$ and $B = \{b\}$ with $0 < a < b < 0.5$. Then there is an $\omega \in S^{\infty}[A] - S^{\infty}[B]$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Strict Domination

Lemma

Suppose $A = \{a\}$ and $B = \{b\}$ with $0 < a < b < 0.5$. Then there is an $\omega \in S^{\infty}[A] - S^{\infty}[B]$.

(Proof Idea) Let N_1, N_2, \ldots be a computable enumeration of the c.e. A-martingales.

At stage s, pick a finite extension ω_s of the current candidate ω_{s-1} which satisfies the following:

KORK ERKER ADE YOUR

Strict Domination

Lemma

Suppose $A = \{a\}$ and $B = \{b\}$ with $0 < a < b < 0.5$. Then there is an $\omega \in S^{\infty}[A] - S^{\infty}[B]$.

(Proof Idea) Let N_1, N_2, \ldots be a computable enumeration of the c.e. A-martingales.

At stage s, pick a finite extension ω_s of the current candidate ω_{s-1} which satisfies the following:

- \triangleright None of N_1, N_2, \ldots, N_s make more money on the extension than they made on ω_{s-1} anywhere along ω_s .
- \triangleright The B-martingale which always bets $(2 b)$ on 1 makes more on ω_s than on ω_{s-1} .

Such extensions exist (counting).

Multiple ratios vs. Single ratio

I

Suppose $A = \{a_1, a_2\}$ and $B = \{b\}$ with $0 < a_1 < a_2 < b$, and $\omega \in S^{\infty}[A]$. Then one of the following B-martingales succeeds on ω.

$$
N(\sigma\beta) = \begin{cases} bN(\sigma) & \text{if } M(\sigma\beta) < M(\sigma) \\ (2-b)N(\sigma) & \text{otherwise,} \end{cases}
$$

Multiple ratios vs. Single ratio

I

I

Suppose $A = \{a_1, a_2\}$ and $B = \{b\}$ with $0 < a_1 < a_2 < b$, and $\omega \in S^{\infty}[A]$. Then one of the following B-martingales succeeds on ω.

$$
N(\sigma\beta) = \begin{cases} bN(\sigma) & \text{if } M(\sigma\beta) < M(\sigma) \\ (2-b)N(\sigma) & \text{otherwise,} \end{cases}
$$

$$
N_1(\sigma \beta) = \begin{cases} bN_1(\sigma) & \text{if } M(\sigma \beta) = a_1M(\sigma) \\ (2-b)N_1(\sigma) & \text{otherwise,} \end{cases}
$$

Multiple ratios vs. Single ratio

I

I

i.

Suppose $A = \{a_1, a_2\}$ and $B = \{b\}$ with $0 < a_1 < a_2 < b$, and $\omega \in S^{\infty}[A]$. Then one of the following B-martingales succeeds on ω.

$$
N(\sigma\beta) = \begin{cases} bN(\sigma) & \text{if } M(\sigma\beta) < M(\sigma) \\ (2-b)N(\sigma) & \text{otherwise,} \end{cases}
$$

$$
N_1(\sigma \beta) = \begin{cases} bN_1(\sigma) & \text{if } M(\sigma \beta) = a_1M(\sigma) \\ (2-b)N_1(\sigma) & \text{otherwise,} \end{cases}
$$

$$
N_2(\sigma\beta) = \begin{cases} bN_2(\sigma) & \text{if } M(\sigma\beta) = a_2M(\sigma) \\ (2-b)N_2(\sigma) & \text{otherwise.} \end{cases}
$$

Definition

An A-martingale *strongly succeeds* on ω if

$$
\liminf_{n\to\infty} d(\omega[0\ldots n-1])=\infty.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

The "savings account" trick does not work.

Lemma

Let A be a valid ratio set. Then there is a sequence $\omega \in S^{\infty}[A]-S_{str}^{\infty}[A].$

Definition

An A-martingale *strongly succeeds* on ω if

$$
\liminf_{n\to\infty}d(\omega[0\ldots n-1])=\infty.
$$

The "savings account" trick does not work.

Lemma

Let A be a valid ratio set. Then there is a sequence $\omega \in S^{\infty}[A]-S_{str}^{\infty}[A].$

(Proof Idea) At every stage s, find a finite extension where every A-martingale N_1, \ldots, N_s makes less than $1/2$ at some point, and on which N_1 attains s at some point.