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Computability and Randomness

@ Study how computation and computability interacts with various
concepts.
@ Algorithmic randomness:
Incompressibility, typicality and unpredictability.
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Computability and Randomness

@ Study how computation and computability interacts with various
concepts.
@ Algorithmic randomness:
Incompressibility, typicality and unpredictability.
@ Lots of results relating randomness and computability

e Interplay between randomness (stochastic properties, patterns)
and computability (information content, coding).

e Tools of computability are used extensively to understand
randomness.

e Much less often: Use of randomness (notions) to understand
computability.

e This last approach is the concern of this talk.
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Examples relating computability and randomness

@ An extremely fruitful example of interactions of this kind comes
from the so-called lowness notions.

@ “Lowness" refers loosely to any property of a real that indicates
that is close to being computable or trivial.
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Examples relating computability and randomness

@ An extremely fruitful example of interactions of this kind comes
from the so-called lowness notions.
@ “Lowness" refers loosely to any property of a real that indicates
that is close to being computable or trivial.
e For example, weakness when used as an oracle.
o A (classically) low set A is when ®4(e) has the same complexity as
de(e).
o A superlow set Ais when A" <, 0.
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Examples relating computability and randomness

@ Lowness = exhibiting characteristics resembling 0.
@ The main example from algorithmic randomness is K-triviality.
@ Areal Ais K-trivial if it is opposite of being random (Solovay).

@ Downey, Hirschfeldt, Nies, Stephan worked on it using ideas from
computability.
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Examples relating computability and randomness

@ Lowness = exhibiting characteristics resembling 0.

@ The main example from algorithmic randomness is K-triviality.

@ Areal Ais K-trivial if it is opposite of being random (Solovay).

@ Downey, Hirschfeldt, Nies, Stephan worked on it using ideas from
computability.

@ K-trivial reals are robust:

e Low for K, low for random, low for weak 2-randomness, base for
randomness, etc.

e Notice they are all “lowness" properties connected to randomness.

e Deep results are obtained using tools and intuition from
computability.
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Examples relating computability and randomness

@ Lowness = exhibiting characteristics resembling 0.
@ Another example connected to randomness: traceability.

Definition

A trace for a partial function f :C w — w is a sequence of finite sets
{Tx} of numbers such that for every x, either f(x) 1 or f(x) € Tx.
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Examples relating computability and randomness

@ Lowness = exhibiting characteristics resembling 0.
@ Another example connected to randomness: traceability.

Definition

A trace for a partial function f :C w — w is a sequence of finite sets
{Tx} of numbers such that for every x, either f(x) 1 or f(x) € Tx.

@ Origins in the study of cardinal characteristics of the continuum
(Bartoszynski) - slaloms.

@ Terwijn and Zambella introduced this in the effective context.

@ The trace { Ty} should be easier to present than f; the value of
f(x) is one of finitely many possibilities.
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Traceability: randomness and computability

@ For example if g dominates f, then g provides a trace for f.

@ Terwijn and Zambella show that “computable traceability" and “c.e.
traceability" are related to lowness for Schnorr randomness.
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Traceability: randomness and computability

@ For example if g dominates f, then g provides a trace for f.

@ Terwijn and Zambella show that “computable traceability" and “c.e.
traceability" are related to lowness for Schnorr randomness.

@ Are there other ways to express randomness concepts by discrete
combinatorial notions? Thinking of K-triviality.

@ How about if we consider a suitable effectivisation of traceability?

Selwyn Ng Characterising SJT 6/17



Traceability: randomness and computability

Definition (Figueira, Nies and Stephan)
@ Areal Ais jump traceable (JT) if the universal A-partial
computable function ®4(e) has a c.e. trace { Ty} such that
# Ty < h(x) for some computable function h.
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Traceability: randomness and computability

Definition (Figueira, Nies and Stephan)
@ Areal Ais jump traceable (JT) if the universal A-partial
computable function ®4(e) has a c.e. trace { Ty} such that
# Ty < h(x) for some computable function h.

@ Areal Ais strongly jump traceable (SJT) if for every computable h,
the function ®4(e) has a c.e. trace { Ty} such that # T, < h(x).
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Traceability: randomness and computability

Definition (Figueira, Nies and Stephan)
@ Areal Ais jump traceable (JT) if the universal A-partial
computable function ®4(e) has a c.e. trace { Ty} such that
# Ty < h(x) for some computable function h.

@ Areal Ais strongly jump traceable (SJT) if for every computable h,
the function ®4(e) has a c.e. trace { Ty} such that # T, < h(x).

@ (Miller, Nies) Is K-triviality the same as strong jump traceability?

@ What started as a seemingly technical definition turned out to be
of great interest on its own.

@ SJT yielded many further remarkable connections between
computability and randomness.

Selwyn Ng Characterising SJT 7/17



SJT: randomness and computability

Theorem (Cholak, Downey, Greenberg)
Each c.e. SJT is K -trivial. The converse fails.

@ However, it's not the end...
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SJT: randomness and computability

Theorem (Cholak, Downey, Greenberg)
Each c.e. SJT is K -trivial. The converse fails.

@ However, it's not the end...

Theorem (Cholak, Downey, Greenberg)
The c.e. SJT sets form an ideal in the c.e. degrees.

@ In contrast, Bickford and Mills show that 0’ = a U b for some c.e.
JT degrees a, b.
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SJT: randomness and computability

Theorem (Cholak, Downey, Greenberg)
Each c.e. SJT is K -trivial. The converse fails.

@ However, it's not the end...

Theorem (Cholak, Downey, Greenberg)
The c.e. SJT sets form an ideal in the c.e. degrees.

@ In contrast, Bickford and Mills show that 0’ = a U b for some c.e.
JT degrees a, b.

@ Nevertheless, SJTs are fundamentally similar to K-trivials:
Theorem (Greenberg and Nies)
A c.e. set A is SJT iff it obeys every benign cost function.

@ Unifies several results.
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SJT: randomness and computability

@ SJTs are shown to be robust with connections to randomness.

Theorem (Greenberg-Nies, Greenberg-Hirschfeldt-Nies,

Kucera-Nies, Greenberg-Turetsky)
The following are equivalent for a c.e. set A:

e Ais SJT.

A <t every superlow random.

A <t every superhigh random.

A <t every w-c.e. random.

e A <7 some Demuth random.

A is a base for Demuthgr.
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General results about SJT

@ For atime only c.e. SJTs were understood.

Theorem (Downey, Greenberg)
Every SJT is K -trivial.
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Every SJT is computed by a c.e. SJT.

@ This means that SJT is inherently enumerable.
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General results about SJT

@ For atime only c.e. SJTs were understood.

Theorem (Downey, Greenberg)
Every SJT is K -trivial.

Theorem (Diamondstone, Greenberg, Turetsky)

Every SJT is computed by a c.e. SJT.

@ This means that SJT is inherently enumerable.

Theorem (Figueira-Nies-Stephan, DGT)

A real is SJT iff it is strongly superlow.
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Applications to degree theory

@ Most results about SJT applies tools of computability to
understand randomness.

@ A rare application the other way:

Theorem (Downey, Greenberg)

The pseudojump operator obtained by relativising a non-computable
c.e. SJT is a natural example of a strongly nontrivial pseudojump
operator that cannot be inverted while avoiding an arbitrary uppercone.
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Applications to degree theory

@ Most results about SJT applies tools of computability to
understand randomness.

@ A rare application the other way:

Theorem (Downey, Greenberg)

The pseudojump operator obtained by relativising a non-computable
c.e. SJT is a natural example of a strongly nontrivial pseudojump
operator that cannot be inverted while avoiding an arbitrary uppercone.

@ We want more results like this. For example, what we lack is a
characterization of SJT in terms of a property that does not
mention measure, randomness or any related notion.
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An unlikely candidate

@ The property we will use as a candidate comes from the study of
c.e. degrees.

Definition

Let C be a downwards closed class of degrees. Let PRESERVE(C) be
the class of all degrees a such thatau w < C for every w € C.

@ PRESERVE(C) is an ideal and PRESERVE(C) C C.

@ |deals are of interest in understanding the structure of c.e.
degrees and definability.
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An unlikely candidate

@ The property we will use as a candidate comes from the study of
c.e. degrees.

Definition

Let C be a downwards closed class of degrees. Let PRESERVE(C) be
the class of all degrees a such thatau w < C for every w € C.

@ PRESERVE(C) is an ideal and PRESERVE(C) C C.

@ |deals are of interest in understanding the structure of c.e.
degrees and definability.

Theorem (Cholak, Groszek, Slaman)
There is non-computable c.e. degree a € PRESERVE(c.e. low degrees).
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An unlikely candidate

@ What can we say about PRESERVE(C) for various lowness notions
c?
@ Note: This is interesting only if C is not itself already an ideal.
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An unlikely candidate

@ What can we say about PRESERVE(C) for various lowness notions
c?
@ Note: This is interesting only if C is not itself already an ideal.

There is a non-computable c.e. degree a € PRESERVE(c.e. superlow deg).
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An unlikely candidate

@ What can we say about PRESERVE(C) for various lowness notions
c?
@ Note: This is interesting only if C is not itself already an ideal.

There is a non-computable c.e. degree a € PRESERVE(c.e. superlow deg).

@ An unexpected application of “diamond classes":

Theorem (Greenberg, Nies)
Each c.e. SJT degree is € PRESERVE(all superlow deg).
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An unlikely candidate

@ Some questions naturally suggest themselves:
e Is PRESERVE(C.e. superlow deg) = PRESERVE(all superlow deg)?
e What about PRESERVE(C) for a related C?
e What are their relationships with SJT?
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@ Some questions naturally suggest themselves:
e Is PRESERVE(C.e. superlow deg) = PRESERVE(all superlow deg)?
e What about PRESERVE(C) for a related C?
e What are their relationships with SJT?

Theorem (Mclnerney, N)
For each computable h, there is a c.e. set
A € PRESERVE(c.e. superlow deg) such that A is not h-JT.
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An unlikely candidate

@ Some questions naturally suggest themselves:
@ |s PRESERVE(C.e. superlow deg) = PRESERVE(all superlow deg)?
e What about PRESERVE(C) for a related C?
e What are their relationships with SJT?

Theorem (Mclnerney, N)

For each computable h, there is a c.e. set
A € PRESERVE(c.e. superlow deg) such that A is not h-JT.

4

Corollary

e SJT is a strict subclass of PRESERVE(c.e. superlow deg).

@ PRESERVE(c.e. superlow deg) C superlow degrees, but there is no
computable h such that PRESERVE(c.e. superlow deg) C h-superlow
degrees.
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An unlikely candidate

@ Does this kill all hopes of characterizing SJT? Remarkably, we
found:
Theorem (Mclnerney, N)
Let A be c.e. and PRESERVE(all superlow deg). Then A is SJT.
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An unlikely candidate

@ Does this kill all hopes of characterizing SJT? Remarkably, we
found:
Theorem (Mclnerney, N)
Let A be c.e. and PRESERVE(all superlow deg). Then A is SJT.

For c.e. degrees,
SJT = PRESERVE(all superlow deg) C PRESERVE(c.e. superlow deg).
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An unlikely candidate

@ We consider expanding the class C = all JT degrees.
(Note there are uncountably many JT degrees).

Theorem (Mclnerney, N)
Let A be a c.e. SJT. Then deg(A) € PRESERVE(all JT deg)
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An unlikely candidate

@ We consider expanding the class C = all JT degrees.
(Note there are uncountably many JT degrees).

Theorem (Mclnerney, N)
Let A be a c.e. SJT. Then deg(A) € PRESERVE(all JT deg)

@ We turn to non-c.e. degrees. By a rather involved argument, we
show:

Theorem (Mclnerney, N)
Let A be A and deg(A) € PRESERVE(AJ JT deg). Then A is SJT.

@ This proof is “non-effective".
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@ Summarizing, we obtain the following characterizations of SJT by
degree-theoretic properties:
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@ Summarizing, we obtain the following characterizations of SJT by
degree-theoretic properties:
For a A degree a, the following are equivalent:

e ais SJT.
@ a € PRESERVE(AJ JT deg).
@ a € PRESERVE(all JT deg).

If ais c.e., the following is also equivalent:
e a € PRESERVE(all superlow deg).
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@ Summarizing, we obtain the following characterizations of SJT by
degree-theoretic properties:
For a A degree a, the following are equivalent:
e ais SJT.
@ ac PRESERVE(AJ JT deg).
@ a € PRESERVE(all JT deg).
If ais c.e., the following is also equivalent:
e a € PRESERVE(all superlow deg).

@ Open question: Can we remove the c.e. assumption for

PRESERVE(all superlow deg)? JT is used in a very essential way
for the above.
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@ Summarizing, we obtain the following characterizations of SJT by
degree-theoretic properties:
For a A degree a, the following are equivalent:
e ais SJT.
@ ac PRESERVE(AJ JT deg).
@ a € PRESERVE(all JT deg).
If ais c.e., the following is also equivalent:
e a € PRESERVE(all superlow deg).

@ Open question: Can we remove the c.e. assumption for

PRESERVE(all superlow deg)? JT is used in a very essential way
for the above.

@ Thank you.
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