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Computability and Randomness

Study how computation and computability interacts with various
concepts.

Algorithmic randomness:
Incompressibility, typicality and unpredictability.

Lots of results relating randomness and computability
Interplay between randomness (stochastic properties, patterns)
and computability (information content, coding).
Tools of computability are used extensively to understand
randomness.
Much less often: Use of randomness (notions) to understand
computability.
This last approach is the concern of this talk.
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Examples relating computability and randomness

An extremely fruitful example of interactions of this kind comes
from the so-called lowness notions.

“Lowness" refers loosely to any property of a real that indicates
that is close to being computable or trivial.

For example, weakness when used as an oracle.
A (classically) low set A is when ΦA

e (e) has the same complexity as
Φe(e).
A superlow set A is when A′ ≤wtt ∅′.
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Examples relating computability and randomness

Lowness = exhibiting characteristics resembling ∅.

The main example from algorithmic randomness is K -triviality.

A real A is K -trivial if it is opposite of being random (Solovay).

Downey, Hirschfeldt, Nies, Stephan worked on it using ideas from
computability.

K -trivial reals are robust:
Low for K , low for random, low for weak 2-randomness, base for
randomness, etc.
Notice they are all “lowness" properties connected to randomness.
Deep results are obtained using tools and intuition from
computability.
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Examples relating computability and randomness

Lowness = exhibiting characteristics resembling ∅.

Another example connected to randomness: traceability.

Definition
A trace for a partial function f :⊆ ω 7→ ω is a sequence of finite sets
{Tx} of numbers such that for every x , either f (x) ↑ or f (x) ∈ Tx .

Origins in the study of cardinal characteristics of the continuum
(Bartoszyński) - slaloms.

Terwijn and Zambella introduced this in the effective context.

The trace {Tx} should be easier to present than f ; the value of
f (x) is one of finitely many possibilities.
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(Bartoszyński) - slaloms.

Terwijn and Zambella introduced this in the effective context.

The trace {Tx} should be easier to present than f ; the value of
f (x) is one of finitely many possibilities.

Selwyn Ng Characterising SJT 5 / 17



Traceability: randomness and computability

For example if g dominates f , then g provides a trace for f .

Terwijn and Zambella show that “computable traceability" and “c.e.
traceability" are related to lowness for Schnorr randomness.

Are there other ways to express randomness concepts by discrete
combinatorial notions? Thinking of K -triviality.

How about if we consider a suitable effectivisation of traceability?
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Traceability: randomness and computability

Definition (Figueira, Nies and Stephan)
A real A is jump traceable (JT) if the universal A-partial
computable function ΦA

e (e) has a c.e. trace {Tx} such that
#Tx < h(x) for some computable function h.

A real A is strongly jump traceable (SJT) if for every computable h,
the function ΦA

e (e) has a c.e. trace {Tx} such that #Tx < h(x).

(Miller, Nies) Is K -triviality the same as strong jump traceability?

What started as a seemingly technical definition turned out to be
of great interest on its own.

SJT yielded many further remarkable connections between
computability and randomness.
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SJT: randomness and computability

Theorem (Cholak, Downey, Greenberg)
Each c.e. SJT is K -trivial. The converse fails.

However, it’s not the end...

Theorem (Cholak, Downey, Greenberg)
The c.e. SJT sets form an ideal in the c.e. degrees.

In contrast, Bickford and Mills show that 0′ = a ∪ b for some c.e.
JT degrees a,b.

Nevertheless, SJTs are fundamentally similar to K -trivials:

Theorem (Greenberg and Nies)
A c.e. set A is SJT iff it obeys every benign cost function.

Unifies several results.
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SJT: randomness and computability

SJTs are shown to be robust with connections to randomness.

Theorem (Greenberg-Nies, Greenberg-Hirschfeldt-Nies,
Kucera-Nies, Greenberg-Turetsky)
The following are equivalent for a c.e. set A:

A is SJT.

A ≤T every superlow random.

A ≤T every superhigh random.

A ≤T every ω-c.e. random.

A ≤T some Demuth random.

A is a base for DemuthBLR .
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General results about SJT

For a time only c.e. SJTs were understood.

Theorem (Downey, Greenberg)
Every SJT is K -trivial.

Theorem (Diamondstone, Greenberg, Turetsky)
Every SJT is computed by a c.e. SJT.

This means that SJT is inherently enumerable.

Theorem (Figueira-Nies-Stephan, DGT)
A real is SJT iff it is strongly superlow.
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Applications to degree theory

Most results about SJT applies tools of computability to
understand randomness.

A rare application the other way:

Theorem (Downey, Greenberg)
The pseudojump operator obtained by relativising a non-computable
c.e. SJT is a natural example of a strongly nontrivial pseudojump
operator that cannot be inverted while avoiding an arbitrary uppercone.

We want more results like this. For example, what we lack is a
characterization of SJT in terms of a property that does not
mention measure, randomness or any related notion.
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An unlikely candidate

The property we will use as a candidate comes from the study of
c.e. degrees.

Definition
Let C be a downwards closed class of degrees. Let PRESERVE(C) be
the class of all degrees a such that a ∪w ∈ C for every w ∈ C.

PRESERVE(C) is an ideal and PRESERVE(C) ⊆ C.

Ideals are of interest in understanding the structure of c.e.
degrees and definability.

Theorem (Cholak, Groszek, Slaman)
There is non-computable c.e. degree a ∈ PRESERVE(c.e. low degrees).
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An unlikely candidate

What can we say about PRESERVE(C) for various lowness notions
C?

Note: This is interesting only if C is not itself already an ideal.

Theorem (N)
There is a non-computable c.e. degree a ∈ PRESERVE(c.e. superlow deg).

An unexpected application of “diamond classes":

Theorem (Greenberg, Nies)
Each c.e. SJT degree is ∈ PRESERVE(all superlow deg).
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An unlikely candidate

Some questions naturally suggest themselves:
Is PRESERVE(c.e. superlow deg) = PRESERVE(all superlow deg)?
What about PRESERVE(C) for a related C?
What are their relationships with SJT?

Theorem (McInerney, N)
For each computable h, there is a c.e. set
A ∈ PRESERVE(c.e. superlow deg) such that A is not h-JT.

Corollary

SJT is a strict subclass of PRESERVE(c.e. superlow deg).

PRESERVE(c.e. superlow deg) ⊂ superlow degrees, but there is no
computable h such that PRESERVE(c.e. superlow deg) ⊆ h-superlow
degrees.

Selwyn Ng Characterising SJT 14 / 17



An unlikely candidate

Some questions naturally suggest themselves:
Is PRESERVE(c.e. superlow deg) = PRESERVE(all superlow deg)?
What about PRESERVE(C) for a related C?
What are their relationships with SJT?

Theorem (McInerney, N)
For each computable h, there is a c.e. set
A ∈ PRESERVE(c.e. superlow deg) such that A is not h-JT.

Corollary

SJT is a strict subclass of PRESERVE(c.e. superlow deg).

PRESERVE(c.e. superlow deg) ⊂ superlow degrees, but there is no
computable h such that PRESERVE(c.e. superlow deg) ⊆ h-superlow
degrees.

Selwyn Ng Characterising SJT 14 / 17



An unlikely candidate

Some questions naturally suggest themselves:
Is PRESERVE(c.e. superlow deg) = PRESERVE(all superlow deg)?
What about PRESERVE(C) for a related C?
What are their relationships with SJT?

Theorem (McInerney, N)
For each computable h, there is a c.e. set
A ∈ PRESERVE(c.e. superlow deg) such that A is not h-JT.

Corollary

SJT is a strict subclass of PRESERVE(c.e. superlow deg).

PRESERVE(c.e. superlow deg) ⊂ superlow degrees, but there is no
computable h such that PRESERVE(c.e. superlow deg) ⊆ h-superlow
degrees.

Selwyn Ng Characterising SJT 14 / 17



An unlikely candidate

Does this kill all hopes of characterizing SJT? Remarkably, we
found:

Theorem (McInerney, N)
Let A be c.e. and PRESERVE(all superlow deg). Then A is SJT.

Corollary
For c.e. degrees,
SJT = PRESERVE(all superlow deg) ( PRESERVE(c.e. superlow deg).
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An unlikely candidate

We consider expanding the class C = all JT degrees.
(Note there are uncountably many JT degrees).

Theorem (McInerney, N)
Let A be a c.e. SJT. Then deg(A) ∈ PRESERVE(all JT deg)

We turn to non-c.e. degrees. By a rather involved argument, we
show:

Theorem (McInerney, N)

Let A be ∆0
2 and deg(A) ∈ PRESERVE(∆0

2 JT deg). Then A is SJT.

This proof is “non-effective".
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Summary

Summarizing, we obtain the following characterizations of SJT by
degree-theoretic properties:

For a ∆0
2 degree a, the following are equivalent:

a is SJT.
a ∈ PRESERVE(∆0

2 JT deg).
a ∈ PRESERVE(all JT deg).

If a is c.e., the following is also equivalent:
a ∈ PRESERVE(all superlow deg).

Open question: Can we remove the c.e. assumption for
PRESERVE(all superlow deg)? JT is used in a very essential way
for the above.

Thank you.
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