Pigeons do not jump high

Ludovic Patey Joint work with Benoit Monin

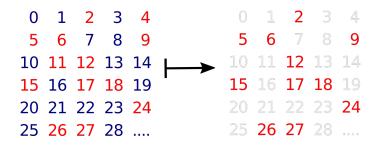
Main results

PIGEONHOLE PRINCIPLE

If you drool infinitely many holes into finitely many pigeons, one pigeon must contain infinitely many holes.

PIGEONHOLE PRINCIPLE

RT_k^1 Every *k*-partition of \mathbb{N} has an infinite subset in one of its parts.



ENCODING SETS WITH THE PIGEONHOLE PRINCIPLE

ENCODING SETS WITH THE PIGEONHOLE PRINCIPLE

Theorem (Dzhafarov, Jockusch)

Suppose $C \leq_T \emptyset$. For every set *A*, there is an infinite subset *H* of *A* or \overline{A} such that $C \leq_T H$.

ENCODING SETS WITH THE PIGEONHOLE PRINCIPLE

Theorem (Dzhafarov, Jockusch)

Suppose $C \leq_T \emptyset$. For every set *A*, there is an infinite subset *H* of *A* or \overline{A} such that $C \leq_T H$.

Theorem (Monin, P.)

Suppose $C \leq_T \emptyset^{(n)}$. For every set *A*, there is an infinite subset *H* of *A* or \overline{A} such that $C \leq_T H^{(n)}$ $(n \geq 0)$.

Taking $C = \emptyset''$ we obtain solutions of non-high degree.

Restricting to Δ_n^0 instances

RESTRICTING TO Δ_n^0 INSTANCES

Theorem (Cholak, Jockusch and Slaman)

For every Δ_2^0 set *A*, there is an infinite subset *H* of *A* or \overline{A} of low₂ degree.

Restricting to Δ_n^0 instances

Theorem (Cholak, Jockusch and Slaman)

For every Δ_2^0 set *A*, there is an infinite subset *H* of *A* or \overline{A} of low₂ degree.

Theorem (Monin, P.)

For every Δ_n^0 set *A*, there is an infinite subset *H* of *A* or \overline{A} of low *n* degree ($n \ge 1$).

By Downey, Hirschfeldt, Lempp and Solomon, we cannot obtain solutions of low_{n-1} degree.

SIDE RESULTS

Theorem (Monin, P.)

Suppose $C \notin \Sigma_n^0$. For every set *A*, there is an infinite subset *H* of *A* or \overline{A} such that $C \notin \Sigma_n^{0,H}$ $(n \ge 1)$.

A function f is X-hyperimmune if it is not dominated by any X-computable function.

Theorem (Monin, P.)

Suppose *f* is $\emptyset^{(n)}$ -hyperimmune. For every set *A*, there is an infinite subset *H* of *A* or \overline{A} such that *f* is $H^{(n)}$ -hyperimmune $(n \ge 0)$.

Motivations

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

$\mathsf{RCA}_0 \vdash A \leftrightarrow T$

in a very weak theory RCA₀ capturing computable mathematics

RCA₀

Robinson arithmetics

$$m + 1 \neq 0$$

$$m + 1 = n + 1 \rightarrow m = n$$

$$\neg (m < 0)$$

$$m < n + 1 \leftrightarrow (m < n \lor m = n)$$

$$m + 0 = m$$

 $m + (n + 1) = (m + n) + 1$
 $m \times 0 = 0$
 $m \times (n + 1) = (m \times n) + m$

Σ_1^0 induction scheme

 $\begin{array}{l} \varphi(\mathbf{0}) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \\ \Rightarrow \forall n\varphi(n) \end{array}$

where $\varphi(n)$ is Σ_1^0

Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \Rightarrow \exists X \forall n(n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is Σ_1^0 with free *X*, and ψ is Π_1^0 .

REVERSE MATHEMATICS

Mathematics are computationally very structured

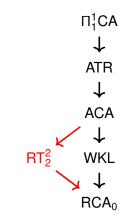
Almost every theorem is empirically equivalent to one among five big subsystems. П¹CA ATR ACA WKL RCA₀

REVERSE MATHEMATICS

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...



Ramsey's theorem for pairs And the pigeonhole principle

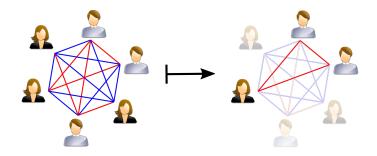
RAMSEY'S THEOREM

- $[X]^n$ is the set of unordered *n*-tuples of elements of X
- A *k*-coloring of $[X]^n$ is a map $f : [X]^n \to k$
- A set $H \subseteq X$ is homogeneous for f if $|f([X]^n)| = 1$.

 $\begin{array}{ll} \mathsf{RT}^n_k & \text{Every } k \text{-coloring of } [\mathbb{N}]^n \text{ admits} \\ \text{ an infinite homogeneous set.} \end{array}$

RAMSEY'S THEOREM FOR PAIRS

RT_k^2 Every *k*-coloring of the infinite clique admits an infinite monochromatic subclique.



The combinatorial features of RT_k^n reveal the computational features of RT_k^{n+1}

Theorem (Jockusch)

There is a computable instance of RT_2^3 such that every solution computes $\emptyset^\prime.$

Theorem (Jockusch)

There is a computable instance of RT_2^3 such that every solution computes \emptyset' .

Lemma

Given a function f, there is an f-computable instance of RT_2^2 such that every solution computes a function dominating f.

Define $g : [\omega]^2 \to 2$ by g(x, y) = 1 iff y > f(x). Let $H = \{x_0 < x_1 < ...\}$ be an infinite *g*-homogeneous set. The function $p_H(n) = x_n$ dominates *f*.

Theorem (Seetapun)

Suppose $C \not\leq_T \emptyset$. For every computable instance of RT_2^2 , there is a solution *H* such that $C \not\leq_T H$.

Theorem (Seetapun)

Suppose $C \not\leq_T \emptyset$. For every computable instance of RT_2^2 , there is a solution *H* such that $C \not\leq_T H$.

Theorem (Dzhafarov, Jockusch)

Suppose $C \not\leq_T \emptyset$. For every instance of RT_2^1 , there is a solution such that $C \not\leq_T H$.

An infinite set *C* is \vec{R} -cohesive for some sets R_0, R_1, \ldots if for every *i*, either $C \subseteq^* R_i$ or $C \subseteq^* \overline{R}_i$.

COH : Every collection of sets has a cohesive set.

Given $f : [\mathbb{N}]^2 \to 2$, define $\langle R_x : x \in \mathbb{N} \rangle$ by $R_x = \{y : f(x, y) = 1\}$. By COH, there is an \vec{R} -cohesive set $C = \{x_0 < x_1 < ...\}$. Let $A = \{n \in \omega : \lim_{y \in C} f(x_n, y) = 1\}$. *A* is a $\Delta_2^{0,C}$ instance of $\mathbb{R}T_2^1$. Every $\mathbb{R}T_2^1$ -solution to *A C*-computes an $\mathbb{R}T_2^2$ -solution to *f*.

$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{COH} \land \Delta^0_2(\mathsf{RT}_2^1)$

(Cholak, Jocksuch and Slaman)

$\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \leftrightarrow \mathsf{COH} \land \Delta_2^0(\mathsf{RT}_2^1)$

(Cholak, Jocksuch and Slaman)

Theorem (Hirschfeldt, Jocksuch, Kjos-Hanssen, Lempp, and Slaman)

 $\mathsf{RCA}_0 \nvDash \mathsf{COH} \to \Delta^0_2(\mathsf{RT}^1_2)$

Theorem (Chong, Slaman and Yang)

 $\mathsf{RCA}_0 \nvDash \Delta^0_2(\mathsf{RT}^1_2) \to \mathsf{COH}$

Using a non-standard model containing only low sets.

Theorem (Jockusch and Stephan)

A degree is p-cohesive if and only if its jump is PA over \emptyset' .

Theorem (Jockusch and Stephan)

A degree is p-cohesive if and only if its jump is PA over \emptyset' .

Is there a (∆⁰₂) set A, such that the jump of every infinite subset of A or A is of PA degree over Ø'?

Theorem (Jockusch and Stephan)

A degree is p-cohesive if and only if its jump is PA over \emptyset' .

- Is there a (∆₂⁰) set A, such that the jump of every infinite subset of A or A is of PA degree over Ø'?
- ► Is there a set A, such that every infinite subset of A or A is high?

The Ramsey-type hierarchies

RAMSEY-TYPE HIERARCHIES

Ramsey's theorem

Definition

Given a coloring $f : [\mathbb{N}]^n \to k$, a set H is *f*-homogeneous if there exists a color i < k such that $f([H]^n) = i$.

 $\operatorname{RT}_{k}^{n}$: Every coloring $f : [\mathbb{N}]^{n} \to k$ has an infinite *f*-homogeneous set.

Rainbow Ramsey theorem

Definition

A coloring $f : [\mathbb{N}]^n \to \mathbb{N}$ is *k*-bounded if each color is used at most *k* times. A set *H* is an *f*-rainbow if *f* is injective on $[H]^n$.

 $\operatorname{RRT}_{k}^{n}$: Every *k*-bounded coloring $f : [\mathbb{N}]^{n} \to \mathbb{N}$ has an infinite *f*-rainbow.

RAMSEY-TYPE HIERARCHIES

Thin set theorem

Definition

Given a coloring $f : [\mathbb{N}]^n \to \mathbb{N}$, a set *H* is *f*-thin if $f([H]^n)$ avoids *i*.

 TS^n : Every coloring $f:[\mathbb{N}]^n \to \mathbb{N}$ has an infinite *f*-thin set.

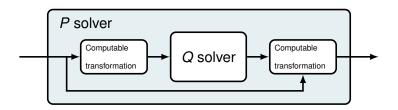
Free set theorem

Definition

Given a coloring $f : [\mathbb{N}]^n \to \mathbb{N}$, a set H is *f*-free if for every $\sigma \in [H]^n$, $f(\sigma) \in H \to f(\sigma) \in \sigma$.

 FS^n : Every coloring $f:[\mathbb{N}]^n \to \mathbb{N}$ has an infinite *f*-free set.

COMPUTABLE REDUCTION



 $\mathsf{P} \leq_{\mathsf{C}} \mathsf{Q}$

Every P-instance *I* computes a Q-instance *J* such that for every solution *X* to *J*, $X \oplus I$ computes a solution to *I*.

THE HIERARCHIES OVER COMPUTABLE REDUCIBILITY

Definition (Jockusch's bounds)

For every $n \ge 2$,

- (i) Every computable P^n -instance has a \prod_n^0 solution.
- (ii) There is a computable P^n -instance with no Σ_n^0 solution.

If a hierarchy satisfies Jockusch's bounds, then it is strict over computable reducibility.

THE HIERARCHIES OVER COMPUTABLE REDUCIBILITY

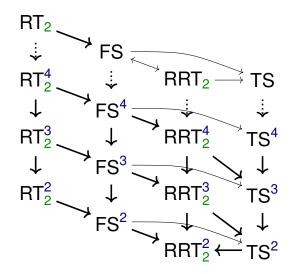
Theorem

The following satisfy Jockusch's bounds.

- (Jockusch) Ramsey's theorem
- The rainbow Ramsey theorem (Csima, Mileti)
- The free set theorem (Cholak, Giusto, Hirst, Jockusch)
- The thin set theorem

(Cholak, Giusto, Hirst, Jockusch)

THE HIERARCHIES OVER COMPUTABLE REDUCIBILITY



RAMSEY-TYPE HIERARCHIES

What about reverse mathematics?

RAMSEY'S THEOREM IN REVERSE MATHS

Theorem (Jockusch)

For every $n \ge 3$, $\text{RCA}_0 \vdash \text{RT}_2^n \leftrightarrow \text{ACA}$.

Theorem (Seetapun)

 $\mathsf{RCA}_0 \wedge \mathsf{RT}_2^2 \not\vdash \mathsf{ACA}$

$$\begin{array}{c} \mathsf{RT}_2^k, \ n \geq 3 \\ \downarrow \\ \mathsf{RT}_2^2 \end{array}$$

Theorem (Wang)

None of FS, RRT₂ and TS imply ACA over RCA₀.

Theorem (Cholak, Jockusch, Slaman)

Every computable RT_2^2 -instance admits a low₂ solution. The same holds for FS², RRT_2^2 and TS².

Theorem (Wang)

Every computable RRT_2^3 -instance admits a low₃ solution.

Definition (Strong Jockusch's bounds)

For every $n \ge 2$,

- (i) Every computable P^n -instance has a low_n solution.
- (ii) There is a computable P^n -instance with no $\sum_{n=1}^{\infty} P^n$ solution.

If a hierarchy satisfies strong Jockusch's bounds, then it is strict over reverse mathematics.

Do FS, RRT₂ or TS satisfy strong Jockusch's bounds?

Do FS, RRT₂ or TS satisfy strong Jockusch's bounds?

Theorem (Monin, P.)

For every Δ_n^0 set *A*, there is an infinite subset *H* of *A* or \overline{A} of low *n* degree ($n \ge 1$).

Proof techniques

The forcing question

Notion of forcing

$$(\mathbb{P},\leq)$$

Denotation
$$[\mathcal{C}]\subseteq 2^\omega$$

such that $d \leq c \rightarrow [d] \subseteq [c]$.

Generic set

$$[\mathcal{F}] = igcap_{m{c}\in\mathcal{F}}[m{c}]$$

where \mathcal{F} is a filter.

Forcing relation

$$c \Vdash \varphi(G)$$

where $oldsymbol{c} \in \mathbb{P}$

Lemma

Let \mathcal{F} be a sufficiently generic filter and $G \in [\mathcal{F}]$ and $\varphi(G)$ be an arithmetical formula. Then

 $\varphi(G)$ holds iff $c \Vdash \varphi(G)$ for some $c \in \mathcal{F}$.

Forcing question

$${old C}$$
 ? $\vdash arphi({old G})$
where ${old c} \in \mathbb{P}$ and $arphi({old G})$ is Σ_n^0

Lemma

Let $c \in \mathbb{P}$ and $\varphi(G)$ be a Σ_n^0 formula. (a) If $c ?\vdash \varphi(G)$, then $d \Vdash \varphi(G)$ for some $d \leq c$; (b) If $c ?\nvDash \varphi(G)$, then $d \Vdash \neg \varphi(G)$ for some $d \leq c$.

EXAMPLE 1. COHEN FORCING

Notion of forcing

 $(2^{<\omega}, \succeq)$

Denotation

$$[\sigma] = \{ \boldsymbol{G} \in \boldsymbol{2}^{\omega} : \sigma \prec \boldsymbol{G} \}$$

where $\sigma \in \mathbf{2}^{<\omega}$

Forcing relation

 $\begin{array}{ll} \Delta_0^0 \ \sigma \Vdash \varphi(G) & \text{if } \varphi(\sigma) \text{ holds} \\ \Sigma_n^0 \ \sigma \Vdash (\exists x)\varphi(G,x) & \text{if } (\exists w \in \omega)\sigma \vdash \varphi(G,w) \\ \Pi_n^0 \ \sigma \Vdash (\forall x)\varphi(G,x) & \text{if } (\forall w \in \omega)(\forall \tau \succeq \sigma)\tau \vdash \varphi(G,w) \end{array}$

Forcing guestion

 $\sigma \mathrel{?}\vdash \varphi(G) \text{ if } (\exists \tau \succeq \sigma) \tau \Vdash \varphi(G)$

EXAMPLE 2: TREE FORCING

A binary tree is a set $T \subseteq 2^{<\omega}$ closed downward under the prefix relation.

Notion of forcing

 (\mathbb{T},\subseteq)

where \mathbb{T} is the set of infinite computable binary trees

Denotation

$$G \in [T]$$
 if $(\forall \sigma \prec G) \sigma \in T$

where $T \in \mathbb{T}$.

EXAMPLE 2. TREE FORCING

Forcing relation

 $\Sigma_1^0 T \Vdash (\exists x) \varphi(G, x)$ $\Pi_1^0 \ T \Vdash (\forall x) \varphi(G, x)$ $\prod_{n=1}^{0} T \Vdash (\forall x) \varphi(G, x)$

if $(\exists t \in \omega) (\forall \sigma \in T^{[t]}) (\exists w \in \omega) \varphi(\sigma, x)$ if $(\forall \sigma \in T)(\forall w < |\sigma|) \varphi(\sigma, w)$ $\Sigma_{p}^{0} T \Vdash (\exists x) \varphi(G, x)$ if $(\exists w \in \omega) T \vdash \varphi(G, w)$ if $(\forall w \in \omega)(\forall S \leq T)S \vdash \varphi(G, w)$

Forcing question

 Σ_1^0 T? $\vdash \varphi(G)$ if $T \Vdash \varphi(G)$ Σ_n^0 $T \mathrel{?}\vdash \varphi(G)$ if $(\exists S < T)S \Vdash \varphi(G)$

Suppose $c \mathrel{?}\vdash \varphi(G)$ is uniformly Σ_n^0 whenever $\varphi(G)$ is Σ_n^0

Lemma (Wang)

For every non- Σ_n^0 set *C*, and every Σ_n^0 formula $\varphi(G, x)$, the following set is dense in (\mathbb{P}, \leq) .

$$\textit{D} = \{\textit{c} \in \mathbb{P} : (\exists\textit{w} \not\in \textit{C})\textit{c} \Vdash \varphi(\textit{G},\textit{w}) \lor (\exists\textit{w} \in \textit{C})\textit{c} \Vdash \neg \varphi(\textit{G},\textit{w})\}$$

If *C* is not Σ_n^0 , then it is not $\Sigma_n^{0,G}$ for every sufficiently generic *G*.

Lemma (Wang)

For every non- Σ_n^0 set *C*, and every Σ_n^0 formula $\varphi(G, x)$, the following set is dense in (\mathbb{P}, \leq) .

 $\textit{\textit{D}} = \{\textit{\textit{c}} \in \mathbb{P} : (\exists\textit{\textit{w}} \not\in \textit{\textit{C}})\textit{\textit{c}} \Vdash \varphi(\textit{\textit{G}},\textit{\textit{w}}) \lor (\exists\textit{\textit{w}} \in \textit{\textit{C}})\textit{\textit{c}} \Vdash \neg \varphi(\textit{\textit{G}},\textit{\textit{w}})\}$

Given $c \in \mathbb{P}$ and $\varphi(G, x)$, define $S = \{w \in \omega : c \mathrel{?}\vdash \varphi(G, w)\}$

S is Σ_n^0 but C is not Σ_n^0 . Let $w \in S \Delta C$.

▶ If $w \in S \setminus C$, $d \Vdash \varphi(G, w)$ for some $d \leq c$

▶ If $w \in C \setminus S$, $d \Vdash \neg \varphi(G, w)$ for some $d \leq c$

Definition

A forcing question $?\vdash$ is compact if for every $c \in \mathbb{P}$ and every formula $\psi(G, x)$, $c ?\vdash (\exists x)\psi(G, x)$ if and only if there is a finite set U such that $c ?\vdash (\exists x \in U)\psi(G, x)$.

A function *f* is *X*-hyperimmune if it is not dominated by any *X*-computable function.

Suppose $c \mathrel{?}\vdash \varphi(G)$ is uniformly Σ_n^0 whenever $\varphi(G)$ is Σ_n^0 and is compact

Lemma

For every *n*, every $\emptyset^{(n)}$ -hyperimmune function *f* and every Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$\mathcal{D} = \{ oldsymbol{c} \in \mathbb{P} : (\exists w) oldsymbol{c} \Vdash \Phi_{oldsymbol{e}}^{G^{(n)}}(w) \uparrow arphi(\exists w) oldsymbol{c} \Vdash \Phi_{oldsymbol{e}}^{G^{(n)}}(w) < f(w) \}$$

If *f* is $\emptyset^{(n)}$ -hyperimmune, then it is $G^{(n)}$ -hyperimmune for every sufficiently generic *G*.

Lemma

For every *n*, every $\emptyset^{(n)}$ -hyperimmune function *f* and every Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$\mathcal{D} = \{ oldsymbol{c} \in \mathbb{P} : (\exists w) oldsymbol{c} \Vdash \Phi^{G^{(n)}}_{oldsymbol{e}}(w) \uparrow arphi(\exists w) oldsymbol{c} \Vdash \Phi^{G^{(n)}}_{oldsymbol{e}}(w) < f(w) \}$$

Given $c \in \mathbb{P}$ and Φ_e , let g(w) search for a finite set U such that $c \mathrel{?}\vdash (\exists x \in U)\Phi_e^{G^{(n)}}(w) \downarrow = x$ and output max U. g is $\emptyset^{(n)}$ -p.c.

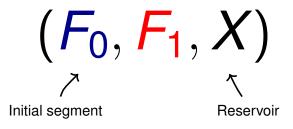
- ► If *g* is total, then g(w) < f(w) for some *w*. Then $d \Vdash (\exists x < f(w)) \Phi_e^{G^{(n)}}(w) \downarrow = x$ for some $d \le c$
- ▶ If *g* is partial, then g(w) ↑ for some *w*. Then $d \Vdash (\exists x) \Phi_e^{G^{(n)}}(w)$ ↑ for some $d \leq c$.

Forcing for RT¹₂

A forcing question for Σ_1^0 formulas.

(Cholak, Jockush and Slaman)

NOTION OF FORCING



- F_i is finite, X is infinite, max $F_i < \min X$
- ► $X \in \mathcal{M} \models \mathsf{WKL}$
- ► $F_i \subseteq A_i$

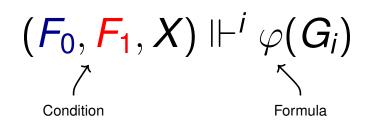
(Mathias condition) (Weakness property) (Combinatorics)

NOTION OF FORCING

ExtensionDenotation $(E_0, E_1, Y) \le (F_0, F_1, X)$ $G_i \in [F_0, F_1, X]_i$ \blacktriangleright $F_i \subseteq E_i$ \blacktriangleright \vdash $Y \subseteq X$ \blacktriangleright \leftarrow $E_i \setminus F_i \subseteq X$

$$[\boldsymbol{E}_0, \boldsymbol{E}_1, \boldsymbol{Y}]_i \subseteq [\boldsymbol{F}_0, \boldsymbol{F}_1, \boldsymbol{X}]_i$$

FORCING RELATION



$$\begin{split} \Sigma_1^0 \ (F_0,F_1,X) \Vdash^i (\exists x) \varphi(G_i,x) & \text{ if } (\exists w \in \omega) \varphi(F_i,w) \\ \Pi_1^0 \ (F_0,F_1,X) \Vdash^i (\forall x) \varphi(G_i,x) & \text{ if } (\forall E \subseteq X) (\forall w) \varphi(F_i \cup E,w) \end{split}$$

FORCING QUESTION

$$(F_0, F_1, X) ? \vdash \varphi_0(G_0) \lor \varphi_1(G_1)$$

Lemma

Let $c \in \mathbb{P}$ and $\varphi_0(G), \varphi_1(G)$ be a Σ_1^0 formulas. (a) If $c \mathrel{?}\vdash \varphi_0(G_0) \lor \varphi_1(G_1)$, then $d \Vdash^i \varphi_i(G_i)$ (b) If $c \mathrel{?}\nvDash \varphi_0(G_0) \lor \varphi_1(G_1)$, then $d \Vdash^i \neg \varphi_i(G_i)$ for some $d \leq c$ and i < 2.

FORCING QUESTION

$$(F_0, F_1, X)$$
? $\vdash \varphi_0(G_0) \lor \varphi_1(G_1)$

is the formula

 $(\forall B_0 \sqcup B_1 = \mathbb{N})(\exists i < 2)(\exists E \subseteq X \cap B_i)\varphi_i(F_i \cup E)$

or equivalently

 $(\exists H \subseteq_{fin} X)(\forall B_0 \sqcup B_1 = H)(\exists i < 2)(\exists E \subseteq B_i)\varphi_i(F_i \cup E)$

The formula is $\Sigma_1^{0,X}$

Case 1: $\psi(x, n)$ holds

Letting $B_i = A_i$, there is an extension $d \le c$ such that

 $d \Vdash^0 \varphi_1(G_0)$ or $d \Vdash^1 \varphi_1(G_1)$

Case 2: $\psi(x, n)$ does not hold

The class C of all $B_0 \sqcup B_1 = \mathbb{N}$ such that

$$(\forall i < 2)(\forall E_i \subseteq X \cap B_i)\Phi_{e_i}^{F_i \cup E_i}(x) \neq n$$

is a non-empty $\Pi_1^{0,X}$ class. Pick $B_0 \sqcup B_1 \in \mathcal{C} \cap \mathcal{M}$.

 $(F_0, F_1, X \cap B_i) \Vdash^i \neg \varphi_i(G_i)$

Is there a set *A*, such that the jump of every infinite subset of *A* or \overline{A} is of PA degree over \emptyset' ?

REFERENCES

- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, 66(01):1–55, 2001.
 - Carl G. Jockusch.

Ramsey's theorem and recursion theory. Journal of Symbolic Logic, 37(2):268–280, 1972.

Benoit Monin and Ludovic Patey. Pigeons do not jump high.

To appear, 2018.