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PIGEONHOLE PRINCIPLE

If you drool infinitely many holes into finitely many
pigeons, one pigeon must contain infinitely many holes.
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PIGEONHOLE PRINCIPLE

RT1
k

Every k -partition of N has an
infinite subset in one of its parts.

4 / 54



MAIN RESULTS MOTIVATIONS PROOF TECHNIQUES

ENCODING SETS WITH THE PIGEONHOLE PRINCIPLE

Theorem (Dzhafarov, Jockusch)

Suppose C 6≤T ∅. For every set A, there is an infinite subset H
of A or A such that C 6≤T H.

Theorem (Monin, P.)

Suppose C 6≤T ∅(n). For every set A, there is an infinite subset
H of A or A such that C 6≤T H(n) (n ≥ 0).

Taking C = ∅′′ we obtain solutions of non-high degree.
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RESTRICTING TO ∆0
n INSTANCES

Theorem (Cholak, Jockusch and Slaman)

For every ∆0
2 set A, there is an infinite subset H of A or A of

low2 degree.

Theorem (Monin, P.)

For every ∆0
n set A, there is an infinite subset H of A or A of

lown degree (n ≥ 1).

By Downey, Hirschfeldt, Lempp and Solomon, we cannot obtain
solutions of lown−1 degree.
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SIDE RESULTS

Theorem (Monin, P.)

Suppose C 6∈ Σ0
n. For every set A, there is an infinite subset H

of A or A such that C 6∈ Σ0,H
n (n ≥ 1).

A function f is X -hyperimmune if it is not dominated by any
X -computable function.

Theorem (Monin, P.)

Suppose f is ∅(n)-hyperimmune. For every set A, there is an
infinite subset H of A or A such that f is H(n)-hyperimmune
(n ≥ 0).
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Motivations
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REVERSE MATHEMATICS

Foundational program that seeks to determine
the optimal axioms of ordinary mathematics.

RCA0 ` A↔ T
in a very weak theory RCA0

capturing computable mathematics
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RCA0

Robinson arithmetics

m + 1 6= 0 m + 0 = m
m + 1 = n + 1→ m = n m + (n + 1) = (m + n) + 1
¬(m < 0) m × 0 = 0
m < n + 1↔ (m < n ∨m = n) m × (n + 1) = (m × n) + m

Σ0
1 induction scheme

ϕ(0) ∧ ∀n(ϕ(n)⇒ ϕ(n + 1))
⇒ ∀nϕ(n)

where ϕ(n) is Σ0
1

∆0
1 comprehension scheme

∀n(ϕ(n)⇔ ψ(n))
⇒ ∃X∀n(n ∈ X ⇔ ϕ(n))

where ϕ(n) is Σ0
1 with free X , and ψ

is Π0
1.
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REVERSE MATHEMATICS

Mathematics are
computationally
very structured

Almost every theorem is
empirically equivalent to one
among five big subsystems.

Except for Ramsey’s theory...

RCA0

WKL

ACA

ATR

Π1
1CA

RT2
2
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Ramsey’s theorem for pairs
And the pigeonhole principle
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RAMSEY’S THEOREM

[X ]n is the set of unordered n-tuples of elements of X

A k -coloring of [X ]n is a map f : [X ]n → k

A set H ⊆ X is homogeneous for f if |f ([X ]n)| = 1.

RTn
k

Every k -coloring of [N]n admits
an infinite homogeneous set.
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RAMSEY’S THEOREM FOR PAIRS

RT2
k

Every k -coloring of the infinite clique admits
an infinite monochromatic subclique.
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The combinatorial features of
RTn

k reveal the computational
features of RTn+1

k
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Theorem (Jockusch)

There is a computable instance of RT3
2 such that every solution

computes ∅′.

Lemma

Given a function f , there is an f -computable instance of RT2
2

such that every solution computes a function dominating f .

Define g : [ω]2 → 2 by g(x , y) = 1 iff y > f (x).

Let H = {x0 < x1 < . . . } be an infinite g-homogeneous set.

The function pH(n) = xn dominates f .
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Theorem (Seetapun)

Suppose C 6≤T ∅. For every computable instance of RT2
2, there

is a solution H such that C 6≤T H.

Theorem (Dzhafarov, Jockusch)

Suppose C 6≤T ∅. For every instance of RT1
2, there is a solution

such that C 6≤T H.
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An infinite set C is ~R-cohesive for some sets R0,R1, . . .
if for every i , either C ⊆∗ Ri or C ⊆∗ R i .

COH : Every collection of sets has a cohesive set.

Given f : [N]2 → 2, define 〈Rx : x ∈ N〉 by Rx = {y : f (x , y) = 1}.

By COH, there is an ~R-cohesive set C = {x0 < x1 < . . . }.
Let A = {n ∈ ω : limy∈C f (xn, y) = 1}.

A is a ∆0,C
2 instance of RT1

2.

Every RT1
2-solution to A C-computes an RT2

2-solution to f .
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RCA0 ` RT2
2 ↔ COH∧∆0

2(RT1
2)

(Cholak, Jocksuch and Slaman)

Theorem (Hirschfeldt, Jocksuch, Kjos-Hanssen, Lempp, and Slaman)

RCA0 0 COH→ ∆0
2(RT1

2)

Theorem (Chong, Slaman and Yang)

RCA0 0 ∆0
2(RT1

2)→ COH

Using a non-standard model containing only low sets.

19 / 54



MAIN RESULTS MOTIVATIONS PROOF TECHNIQUES

RCA0 ` RT2
2 ↔ COH∧∆0

2(RT1
2)

(Cholak, Jocksuch and Slaman)

Theorem (Hirschfeldt, Jocksuch, Kjos-Hanssen, Lempp, and Slaman)

RCA0 0 COH→ ∆0
2(RT1

2)

Theorem (Chong, Slaman and Yang)

RCA0 0 ∆0
2(RT1

2)→ COH

Using a non-standard model containing only low sets.

19 / 54



MAIN RESULTS MOTIVATIONS PROOF TECHNIQUES

An infinite set C is p-cohesive if it is cohesive for the sequence
of primitive recursive functions.

Theorem (Jockusch and Stephan)

A degree is p-cohesive if and only if its jump is PA over ∅′.

� Is there a (∆0
2) set A, such that the jump of every infinite

subset of A or A is of PA degree over ∅′?
� Is there a set A, such that every infinite subset of A or A is

high?
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The Ramsey-type hierarchies

21 / 54
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RAMSEY-TYPE HIERARCHIES

Ramsey’s theorem

Definition

Given a coloring f : [N]n → k , a set H
is f -homogeneous if there exists a
color i < k such that f ([H]n) = i .

RTn
k : Every coloring f : [N]n → k has

an infinite f -homogeneous set.

Rainbow Ramsey theorem

Definition

A coloring f : [N]n → N is k -bounded
if each color is used at most k times.
A set H is an f -rainbow if f is injective
on [H]n.

RRTn
k : Every k -bounded coloring

f : [N]n → N has an infinite f -rainbow.
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RAMSEY-TYPE HIERARCHIES

Thin set theorem

Definition

Given a coloring f : [N]n → N, a set H
is f -thin if f ([H]n) avoids i .

TSn : Every coloring f : [N]n → N has
an infinite f -thin set.

Free set theorem

Definition

Given a coloring f : [N]n → N, a set H
is f -free if for every σ ∈ [H]n,
f (σ) ∈ H → f (σ) ∈ σ.

FSn : Every coloring f : [N]n → N has
an infinite f -free set.
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COMPUTABLE REDUCTION

Q solver
Computable

transformation

Computable

transformation

P solver

P ≤c Q
Every P-instance I computes a Q-instance J such that for every
solution X to J, X ⊕ I computes a solution to I.
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THE HIERARCHIES OVER COMPUTABLE REDUCIBILITY

Definition (Jockusch’s bounds)

For every n ≥ 2,
(i) Every computable Pn-instance has a Π0

n solution.
(ii) There is a computable Pn-instance with no Σ0

n solution.

If a hierarchy satisfies Jockusch’s bounds, then it is strict over
computable reducibility.
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THE HIERARCHIES OVER COMPUTABLE REDUCIBILITY

Theorem

The following satisfy Jockusch’s bounds.
� Ramsey’s theorem (Jockusch)
� The rainbow Ramsey theorem (Csima, Mileti)
� The free set theorem (Cholak, Giusto, Hirst, Jockusch)
� The thin set theorem (Cholak, Giusto, Hirst, Jockusch)
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THE HIERARCHIES OVER COMPUTABLE REDUCIBILITY

RT2
2

RT3
2

RT4
2

RT2

FS2

FS3

FS4

FS

RRT2
2

RRT3
2

RRT4
2

RRT2

TS2

TS3

TS4

TS
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RAMSEY-TYPE HIERARCHIES

What about reverse mathematics?
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RAMSEY’S THEOREM IN REVERSE MATHS

Theorem (Jockusch)

For every n ≥ 3, RCA0 ` RTn
2 ↔ ACA.

Theorem (Seetapun)

RCA0 ∧RT2
2 6` ACA

RT2
2

RTk
2, n ≥ 3
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RAMSEY-TYPE HIERARCHIES IN REVERSE MATHS

Theorem (Wang)

None of FS, RRT2 and TS imply ACA over RCA0.

Theorem (Cholak, Jockusch, Slaman)

Every computable RT2
2-instance admits a low2 solution. The

same holds for FS2, RRT2
2 and TS2.

Theorem (Wang)

Every computable RRT3
2-instance admits a low3 solution.
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RAMSEY-TYPE HIERARCHIES IN REVERSE MATHS

Definition (Strong Jockusch’s bounds)

For every n ≥ 2,
(i) Every computable Pn-instance has a lown solution.
(ii) There is a computable Pn-instance with no Σ0

n solution.

If a hierarchy satisfies strong Jockusch’s bounds, then it is strict
over reverse mathematics.

31 / 54



MAIN RESULTS MOTIVATIONS PROOF TECHNIQUES

RAMSEY-TYPE HIERARCHIES IN REVERSE MATHS

Do FS, RRT2 or TS satisfy
strong Jockusch’s bounds?

Theorem (Monin, P.)

For every ∆0
n set A, there is an infinite subset H of A or A of

lown degree (n ≥ 1).
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Proof techniques
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The forcing question
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Notion of forcing

(P,≤)

Denotation

[c] ⊆ 2ω
such that d ≤ c → [d ] ⊆ [c].

Generic set

[F ] =
⋂

c∈F [c]
where F is a filter.
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Forcing relation

c 
 ϕ(G)
where c ∈ P

Lemma

Let F be a sufficiently generic filter and G ∈ [F ] and ϕ(G) be
an arithmetical formula. Then

ϕ(G) holds iff c 
 ϕ(G) for some c ∈ F .
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Forcing question

c ?`ϕ(G)
where c ∈ P and ϕ(G) is Σ0

n

Lemma

Let c ∈ P and ϕ(G) be a Σ0
n formula.

(a) If c ?`ϕ(G), then d 
 ϕ(G) for some d ≤ c;
(b) If c ?0ϕ(G), then d 
 ¬ϕ(G) for some d ≤ c.
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EXAMPLE 1: COHEN FORCING

Notion of forcing

(2<ω,�)

Denotation

[σ] = {G ∈ 2ω : σ ≺ G}

where σ ∈ 2<ω.

Forcing relation

∆0
0 σ 
 ϕ(G) if ϕ(σ) holds

Σ0
n σ 
 (∃x)ϕ(G, x) if (∃w ∈ ω)σ ` ϕ(G,w)

Π0
n σ 
 (∀x)ϕ(G, x) if (∀w ∈ ω)(∀τ � σ)τ ` ϕ(G,w)

Forcing question

σ ?`ϕ(G) if (∃τ � σ)τ 
 ϕ(G)
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EXAMPLE 2: TREE FORCING

A binary tree is a set T ⊆ 2<ω closed downward under the
prefix relation.

Notion of forcing

(T,⊆)
where T is the set of infinite

computable binary trees

Denotation

G ∈ [T ] if (∀σ ≺ G)σ ∈ T

where T ∈ T.
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EXAMPLE 2: TREE FORCING

Forcing relation

Σ0
1 T 
 (∃x)ϕ(G, x) if (∃t ∈ ω)(∀σ ∈ T [t])(∃w ∈ ω) ϕ(σ, x)

Π0
1 T 
 (∀x)ϕ(G, x) if (∀σ ∈ T )(∀w < |σ|) ϕ(σ,w)

Σ0
n T 
 (∃x)ϕ(G, x) if (∃w ∈ ω)T ` ϕ(G,w)

Π0
n T 
 (∀x)ϕ(G, x) if (∀w ∈ ω)(∀S ≤ T )S ` ϕ(G,w)

Forcing question

Σ0
1 T ?`ϕ(G) if T 
 ϕ(G)

Σ0
n T ?`ϕ(G) if (∃S ≤ T )S 
 ϕ(G)
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APPLICATION 1

Suppose c ?`ϕ(G) is uniformly Σ0
n whenever ϕ(G) is Σ0

n

Lemma (Wang)

For every non-Σ0
n set C, and every Σ0

n formula ϕ(G, x), the
following set is dense in (P,≤).

D = {c ∈ P : (∃w 6∈ C)c 
 ϕ(G,w) ∨ (∃w ∈ C)c 
 ¬ϕ(G,w)}

If C is not Σ0
n, then it is not Σ0,G

n for every sufficiently generic G.
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APPLICATION 1

Lemma (Wang)

For every non-Σ0
n set C, and every Σ0

n formula ϕ(G, x), the
following set is dense in (P,≤).

D = {c ∈ P : (∃w 6∈ C)c 
 ϕ(G,w) ∨ (∃w ∈ C)c 
 ¬ϕ(G,w)}

Given c ∈ P and ϕ(G, x), define S = {w ∈ ω : c ?`ϕ(G,w)}

S is Σ0
n but C is not Σ0

n. Let w ∈ S∆C.

� If w ∈ S \ C, d 
 ϕ(G,w) for some d ≤ c
� If w ∈ C \ S, d 
 ¬ϕ(G,w) for some d ≤ c
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APPLICATION 2

Definition

A forcing question ?` is compact if for every c ∈ P and every
formula ψ(G, x), c ?`(∃x)ψ(G, x) if and only if there is a finite
set U such that c ?`(∃x ∈ U)ψ(G, x).

A function f is X -hyperimmune if it is not dominated by any
X -computable function.
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APPLICATION 2

Suppose c ?`ϕ(G) is uniformly Σ0
n whenever ϕ(G) is Σ0

n and is
compact

Lemma

For every n, every ∅(n)-hyperimmune function f and every
Turing functional Φe, the following set is dense in (P,≤).

D = {c ∈ P : (∃w)c 
 ΦG(n)

e (w) ↑ ∨(∃w)c 
 ΦG(n)

e (w) < f (w)}

If f is ∅(n)-hyperimmune, then it is G(n)-hyperimmune for every
sufficiently generic G.
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APPLICATION 2

Lemma

For every n, every ∅(n)-hyperimmune function f and every
Turing functional Φe, the following set is dense in (P,≤).

D = {c ∈ P : (∃w)c 
 ΦG(n)

e (w) ↑ ∨(∃w)c 
 ΦG(n)

e (w) < f (w)}

Given c ∈ P and Φe, let g(w) search for a finite set U such that
c ?`(∃x ∈ U)ΦG(n)

e (w)↓ = x and output max U. g is ∅(n)-p.c.

� If g is total, then g(w) < f (w) for some w . Then
d 
 (∃x < f (w))ΦG(n)

e (w)↓ = x for some d ≤ c
� If g is partial, then g(w) ↑ for some w . Then

d 
 (∃x)ΦG(n)

e (w) ↑ for some d ≤ c.
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Forcing for RT1
2

A forcing question for Σ0
1 formulas.

(Cholak, Jockush and Slaman)
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NOTION OF FORCING

(F0,F1,X )
Initial segment Reservoir

� Fi is finite, X is infinite, max Fi < min X (Mathias condition)

� X ∈M |= WKL (Weakness property)

� Fi ⊆ Ai (Combinatorics)
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NOTION OF FORCING

Extension

(E0,E1,Y ) ≤ (F0,F1,X )

� Fi ⊆ Ei

� Y ⊆ X

� Ei \ Fi ⊆ X

Denotation

Gi ∈ [F0,F1,X ]i

� Fi ⊆ Gi

� Gi \ Fi ⊆ X

[E0,E1,Y ]i ⊆ [F0,F1,X ]i
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FORCING RELATION

(F0,F1,X ) 
i ϕ(Gi)

Condition Formula

Σ0
1 (F0,F1,X ) 
i (∃x)ϕ(Gi , x) if (∃w ∈ ω)ϕ(Fi ,w)

Π0
1 (F0,F1,X ) 
i (∀x)ϕ(Gi , x) if (∀E ⊆ X )(∀w)ϕ(Fi ∪ E ,w)
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FORCING QUESTION

(F0,F1,X ) ?`ϕ0(G0) ∨ ϕ1(G1)

Lemma

Let c ∈ P and ϕ0(G), ϕ1(G) be a Σ0
1 formulas.

(a) If c ?`ϕ0(G0) ∨ ϕ1(G1), then d 
i ϕi(Gi)

(b) If c ?0ϕ0(G0) ∨ ϕ1(G1), then d 
i ¬ϕi(Gi)

for some d ≤ c and i < 2.
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FORCING QUESTION

(F0,F1,X ) ?`ϕ0(G0) ∨ ϕ1(G1)

is the formula

(∀B0 t B1 = N)(∃i < 2)(∃E ⊆ X ∩ Bi)ϕi(Fi ∪ E)

or equivalently

(∃H ⊆fin X )(∀B0 t B1 = H)(∃i < 2)(∃E ⊆ Bi)ϕi(Fi ∪ E)

The formula is Σ0,X
1
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Case 1: ψ(x ,n) holds

Letting Bi = Ai , there is an extension d ≤ c such that

d 
0 ϕ1(G0) or d 
1 ϕ1(G1)

Case 2: ψ(x ,n) does not hold

The class C of all B0 t B1 = N such that

(∀i < 2)(∀Ei ⊆ X ∩ Bi)ΦFi∪Ei
ei

(x) 6= n

is a non-empty Π0,X
1 class. Pick B0 t B1 ∈ C ∩M.

(F0,F1,X ∩ Bi) 

i ¬ϕi(Gi)
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Is there a set A, such that the jump of every
infinite subset of A or A is of PA degree over ∅′?
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