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Introduction: a question

Question
Among the algebraic field extensions of Q, how many are uniformly
computably categorical?

Sub-questions:
Didn’t you mean “computable algebraic field extensions”?
What’s this “uniformly computably categorical”?
Whadaya mean, “how many”?

Sub-answers:
No. I mean all algebraic field extensions of Q.
A is u.c.c. if there is a Φ s.t., for all B ∼= C ∼= A with domain ω,
Φ∆(B)⊕∆(C) computes an isomorphism from B onto C.
We will put a measure on the space of (isomorphism types of)
algebraic field extensions of Q.
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The space of isomorphism types
We work in the language of fields, extended by d-ary root predicates:

Rd (a0, . . . ,ad−1) ⇐⇒ (∃x) xd + ad−1xd−1 + · · ·+ a0 = 0.

Let Alg∗ be the class of all atomic diagrams of algebraic field
extensions of Q, with domain ω. By Gödel coding, we view these
diagrams as elements of 2ω, yielding the quotient topological space
Alg∗/∼=.

Theorem
There is a computable homeomorphism H from Alg∗/∼= onto 2ω.

That is, both H and H−1 are computed by Turing functionals:
Φ∆(F∗) = H([F ∗]), and ΨJ = H−1(J) ∈ Alg∗ for all indices J ∈ 2ω, with

Ψ

(
Φ∆(F∗)

)
∼= F ∗ & Φ(ΨJ ) = J.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 3 / 18



Computing this homeomorphism
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By a result of Kronecker, all finite algebraic extensions Q(a1, . . . ,an)
have splitting algorithms, uniformly in ~a. So this tree is computably
homeomorphic to 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 4 / 18



Computing this homeomorphism

X 4 − 2

Q
HH

H
Q( 4
√

2)

���
���

Q

X 2 − 2

Q( 4
√

2) Q(
√

2)

@@

Q
�
��

X 8 − 2 Q( 4
√

2) Q(
√

2) Q

X 2 − 4
√

2

List Q[X ]

6

Q( 8
√

2)

@@

Q( 4
√

2)

�
��

Q(
√

2) Q

X 3 − 2
@@ �� @@ �� @@ �� @@ ��

By a result of Kronecker, all finite algebraic extensions Q(a1, . . . ,an)
have splitting algorithms, uniformly in ~a. So this tree is computably
homeomorphic to 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 4 / 18



Computing this homeomorphism

X 4 − 2

Q
HH

H
Q( 4
√

2)

���
���

Q

X 2 − 2 Q( 4
√

2) Q(
√

2)

@@

Q
�
��

X 8 − 2 Q( 4
√

2) Q(
√

2) Q

X 2 − 4
√

2

List Q[X ]

6

Q( 8
√

2)

@@

Q( 4
√

2)

�
��

Q(
√

2) Q

X 3 − 2
@@ �� @@ �� @@ �� @@ ��

By a result of Kronecker, all finite algebraic extensions Q(a1, . . . ,an)
have splitting algorithms, uniformly in ~a. So this tree is computably
homeomorphic to 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 4 / 18



Computing this homeomorphism

X 4 − 2

Q
HH

H
Q( 4
√

2)

���
���

Q

X 2 − 2 Q( 4
√

2) Q(
√

2)

@@

Q
�
��

X 8 − 2

Q( 4
√

2) Q(
√

2) Q

X 2 − 4
√

2

List Q[X ]

6

Q( 8
√

2)

@@

Q( 4
√

2)

�
��

Q(
√

2) Q

X 3 − 2
@@ �� @@ �� @@ �� @@ ��

By a result of Kronecker, all finite algebraic extensions Q(a1, . . . ,an)
have splitting algorithms, uniformly in ~a. So this tree is computably
homeomorphic to 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 4 / 18



Computing this homeomorphism

X 4 − 2

Q
HH

H
Q( 4
√

2)

���
���

Q

X 2 − 2 Q( 4
√

2) Q(
√

2)

@@

Q
�
��

X 8 − 2 Q( 4
√

2) Q(
√

2) Q

X 2 − 4
√

2

List Q[X ]

6

Q( 8
√

2)

@@

Q( 4
√

2)

�
��

Q(
√

2) Q

X 3 − 2
@@ �� @@ �� @@ �� @@ ��

By a result of Kronecker, all finite algebraic extensions Q(a1, . . . ,an)
have splitting algorithms, uniformly in ~a. So this tree is computably
homeomorphic to 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 4 / 18



Computing this homeomorphism

X 4 − 2

Q
HH

H
Q( 4
√

2)

���
���

Q

X 2 − 2 Q( 4
√

2) Q(
√

2)

@@

Q
�
��

X 8 − 2 Q( 4
√

2) Q(
√

2) Q

X 2 − 4
√

2

List Q[X ]

6

Q( 8
√

2)

@@

Q( 4
√

2)

�
��

Q(
√

2) Q

X 3 − 2
@@ �� @@ �� @@ �� @@ ��

By a result of Kronecker, all finite algebraic extensions Q(a1, . . . ,an)
have splitting algorithms, uniformly in ~a. So this tree is computably
homeomorphic to 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 4 / 18



Computing this homeomorphism

X 4 − 2

Q
HH

H
Q( 4
√

2)

���
���

Q

X 2 − 2 Q( 4
√

2) Q(
√

2)

@@

Q
�
��

X 8 − 2 Q( 4
√

2) Q(
√

2) Q

X 2 − 4
√

2

List Q[X ]

6

Q( 8
√

2)

@@

Q( 4
√

2)

�
��

Q(
√

2) Q

X 3 − 2
@@ �� @@ �� @@ �� @@ ��

By a result of Kronecker, all finite algebraic extensions Q(a1, . . . ,an)
have splitting algorithms, uniformly in ~a. So this tree is computably
homeomorphic to 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 4 / 18



Computing this homeomorphism

X 4 − 2

Q
HH

H
Q( 4
√

2)

���
���

Q

X 2 − 2 Q( 4
√

2) Q(
√

2)

@@

Q
�
��

X 8 − 2 Q( 4
√

2) Q(
√

2) Q

X 2 − 4
√

2

List Q[X ]

6

Q( 8
√

2)

@@

Q( 4
√

2)

�
��

Q(
√

2) Q

X 3 − 2
@@ �� @@ �� @@ �� @@ ��

By a result of Kronecker, all finite algebraic extensions Q(a1, . . . ,an)
have splitting algorithms, uniformly in ~a. So this tree is computably
homeomorphic to 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 4 / 18



Why the root predicates?

One can consider the space Alg/∼=, without the root predicates. This
topological space is not homeomorphic to any standard Polish space:
it is a spectral space, with one element that lies in every non-empty
open set, and another element lying in no proper open subset of the
space. So it is not useful for classification or measure.

The space Alg ′/∼= consists of the atomic diagrams of jumps of
algebraic fields, modulo ∼=. Here [Q′] forms a singleton open set, being
the only field in which this Σc

1 predicate fails:

(∃p ∈ Q[X ])(∃x ∈ F ) [p irreducible of degree > 1 & p(x) = 0].

The root predicates constitute just enough information for a
classification by 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 5 / 18



Why the root predicates?

One can consider the space Alg/∼=, without the root predicates. This
topological space is not homeomorphic to any standard Polish space:
it is a spectral space, with one element that lies in every non-empty
open set, and another element lying in no proper open subset of the
space. So it is not useful for classification or measure.

The space Alg ′/∼= consists of the atomic diagrams of jumps of
algebraic fields, modulo ∼=. Here [Q′] forms a singleton open set, being
the only field in which this Σc

1 predicate fails:

(∃p ∈ Q[X ])(∃x ∈ F ) [p irreducible of degree > 1 & p(x) = 0].

The root predicates constitute just enough information for a
classification by 2ω.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 5 / 18



A measure on Alg∗/∼=

Since Alg∗/∼= is homeomorphic to 2ω, it seems natural to transfer the
Lebesgue measure from 2ω to Alg/∼=. But this requires care. In our
first example, the odds of 2 having a square root were 3

4 . In general the
measure depends on the ordering f0, f1, f2, . . . of Q[X ].

Fix a computable Q, and enumerate Q[X ] = {f0, f1, . . .}. Let Fλ = Q.
Given Fσ ⊂ Q, we find the least i , with fi irreducible in Fσ[X ] of prime
degree, for which it is not yet determined whether fi has a root in Fσ.
Adjoin such a root to Fσˆ1, but not to Fσˆ0. This gives a
homeomorphism from 2ω onto Alg∗/∼=, via h 7→

⋃
n Fh�n.

If we now transfer standard Lebesgue measure to Alg∗/∼=, we get a
measure in which the odds of 2 having a 1297-th root are 1

2 , but the
odds of 2 having a 1296-th root are 1

256 . Is this reasonable?
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Haar-compatible measure on Alg∗/∼=

A further improvement is to use Haar-compatible measure µ on
Alg∗/∼=. Here the probability of fσ having a root is deemed to equal

1
deg(fσ) . This idea (and the name) are justified by:

Proposition
For every algebraic field F0 which is normal of finite degree d over Q,

µ({[K ] ∈ Alg/∼= : F0 ⊆ K}) =
1
d
.

Notice that 1
d is precisely the measure of the pointwise stabilizer of F0

within the group Aut(Q), under the Haar measure on this compact
group.
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Measuring properties of algebraic fields
Use either of these measures. For (the isomorphism type of) an
algebraic field, the property of being normal has measure 0. So does
the property of having relatively intrinsically computable predicates Rd .

In Alg∗, the property of being uniformly computably categorical has
measure 1: given two roots x1, x2 of the same irreducible polynomial,
one can wait for them to distinguish themselves, since with probability
1 there is an f for which f (x1,Y ) has a root in the field but f (x2,Y ) does
not. This allows computation of isomorphisms between copies of the
field. The process works uniformly except on a measure-0 set of fields.

Surprisingly, measure-1-many fields in Alg remain uniformly
computably categorical even when the root predicates are removed
from the language. However, the procedures for computing
isomorphisms are not uniform. A single procedure can succeed only
for measure-(1− ε)-many fields.
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Key lemma

Lemma

Let α 6= β ∈ Q be algebraic numbers conjugate over Q. Then, for every
finite algebraic field extension E ⊇ Q(α, β), there is a set
D = {q0 < q1 < · · · } ⊆ Q, decidable uniformly in E , such that for every
k , both of the following hold:

√
α + qk /∈ E(

√
α + ql ,

√
β + ql : l 6= k)(

√
β + qk );√

β + qk /∈ E(
√
α + ql ,

√
β + ql : l 6= k)(

√
α + qk ).

The point is that, for all q in this decidable set D, a field extending E
may contain both

√
α + q and

√
β + q, or just one of them, or neither,

no matter which other
√
α + q̃ and/or

√
β + q̃ it contains (for q̃ 6= q in

D). The probability of containing
√
α + q is always 1

2 , independently of
all the rest. The proof uses the Hilbert Irreducibility Theorem.

Russell Miller (CUNY) Classification for Countable Structures Oberwolfach Jan. 2018 9 / 18



Proving the theorem

Given an ε > 0, and a polynomial f ∈ Q[X ] with roots α 6= β in Q, fix
the set D from the lemma and choose N so large that the odds are
> 1− ε that, in an arbitrary field ⊇ Q(α, β), all of the following hold:

For at least 0.4N of the numbers q0, . . . ,qN−1 in D, α + qi has a
square root in the field.
For at most 0.35N of these numbers, α + qi and β + qi both have
square roots in the field.

The procedure for mapping α, β ∈ F to the right images in a copy F̃
waits until at least 0.4N elements

√
α + qi with i < N have appeared in

F . Then it maps α to the first α̃ ∈ F̃ it finds for which corresponding
elements

√
α̃ + qi all appear in F̃ .

For polynomials of larger degree, use a similar procedure considering
each possible pair of roots of the polynomial.
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Randomness and computable categoricity

Theorem (Franklin & M.)
For every Schnorr-random real h ∈ 2ω, the corresponding field Fh is
uniformly computably categorical, even in the language without the
root predicates. However, there exists a Kurtz-random h for which Fh is
not u.c.c. (in the language without the root predicates).

This raises a broader idea: we can consider an isomorphism type [F ]
to be random just if its index in 2ω is a (ML, Schnorr, etc.)-random set.
This appears compatible with Khoussainov’s concept of random
structures.

In terms of computable structure theory, adding the root predicates
ensures that every F ∗ has an upper cone as its spectrum. But the
homeomorphism is stronger than this: one field may be ML-random
and another not, even when both have the same upper cone as their
spectra.
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Finite-branching trees
For another example, consider the class T1 of all finite-branching
infinite trees, under the predecessor function P. As before, we get a
topological space T1/∼=, which is not readily recognizable. The
obvious predicates to add are the branching predicates Bn:

|=T Bn(x) ⇐⇒ ∃≥ny (P(y) = x).

The enhanced class T ∗1 again has a nice classification. Let
Tm,0,Tm,1, . . . list all finite trees of height exactly m. Given T ∈ T ∗1 , we
can find the unique number f (0) with T1,f (0)

∼= T<2, where T<2 is just
T chopped off after level 1.

Next consider those trees in T2,0,T2,1, . . . with T<2
2,i
∼= T<2. Choose

f (1) so that T<3 is isomorphic to the f (1)-th tree on this list. Continue
choosing f (2), f (3), . . . recursively this way. This yields a computable
map from T ∗1 /∼= onto Baire space ωω, whose inverse is also
computable. So T ∗1 /∼= and Alg∗/∼= are not homeomorphic, although
there are computable reductions in both directions.
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Measure for FB trees (joint with Franklin)
One can place probability measures on ωω by regarding it as the space
of all irrational numbers in (0,1), using continued fractions; or by
assigning measure 2−(1+σ(0)) · · · 2−(1+σ(|σ|−1)) to the set of all paths
through σ. These measures are similar, but both have certain
problems.

In T ∗1 /∼=, one must normalize to account for the requirement that
the tree be infinite.

In the class T ∗0 /∼= of all FB-trees (including finite ones), no
normalization is required, but the finite trees form a class of full
measure. Boring! (Or maybe not...)
T ∗2 /∼= is the class of those FB-trees with no terminal nodes. Here
the measure is more natural, but we have ruled out many trees.

In all three situations, measure-1-many trees are uniformly c.c. when
the branching predicates are included in the language. The interesting
question is what happens in the original language.
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of all irrational numbers in (0,1), using continued fractions; or by
assigning measure 2−(1+σ(0)) · · · 2−(1+σ(|σ|−1)) to the set of all paths
through σ. These measures are similar, but both have certain
problems.

In T ∗1 /∼=, one must normalize to account for the requirement that
the tree be infinite.
In the class T ∗0 /∼= of all FB-trees (including finite ones), no
normalization is required, but the finite trees form a class of full
measure. Boring! (Or maybe not...)
T ∗2 /∼= is the class of those FB-trees with no terminal nodes. Here
the measure is more natural, but we have ruled out many trees.
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Computable categoricity for finite-branching trees

In T0, uniform computable categoricity has full measure, because
every finite tree is u.c.c. However, there is no single procedure Φ
which succeeds on measure-0.999-many trees in T0.

In T1, uniform computable categoricity holds only on a set of
measure 0. In a situation:

vHHH ��
�

v v vv vHHH ��
�

v v vv
one does not know whether to wait for the two left-hand nodes to
distinguish themselves: there is positive probability that they will,
and also that they will not.
In T2/∼=, we conjecture that with the geometric measure, uniform
computable categoricity holds on a set of measure 1, but not
uniformly. This is somewhat similar to Alg/∼=.

(All work here joint with Franklin.)
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Does this always happen?

Question
Which classes of countable structures have definable relations which
can be Morleyized to make the class (under ∼=) homeomorphic to 2ω or
ωω? And, for standard classes, what are those relations?

A subring R of Q is determined by the set of primes p with 1
p ∈ R.

So the class of all these subrings is computably homeomorphic to
2ω, in a language with a unary predicate for invertibility.

For connected finite-valence graphs, isomorphism is a Σ0
3

problem. Adding a constant to the language makes it Π0
2, and

adding the valence function makes the class homeomorphic to ωω.
Equivalence structures have Π0

4 isomorphism problem. Several
different possible solutions present themselves here.

In general, one may need to settle for classification as 2ω/E , for
certain standard equivalence relations E on 2ω (or on ωω).
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TFAbn: Torsion-free abelian groups of rank n
TFAbn/∼= has the indiscrete topology.

TFAb∗n includes divisibility predicates Dp(x) for all primes p. Now, for
any n-tuple of independent elements in G, the atomic diagram of G
gives us an element of 2ω, describing which elements of Qn (with
respect to this basis) lie in G.

Problem: For different choices of basis, we get different h ∈ 2ω. Thus
TFAb∗n/∼= is computably homeomorphic to 2ω/E , for some ER E .

For n = 1, E is just E0, the relation of finite-symmetric-difference.

For n > 1, E ≤0 Eset, where A Eset B means that every column A[n] of
A appears as a column of B and vice versa. However, Eset is strictly
harder than all of these. By results of Hjorth & Thomas, these E must
get strictly harder (even in Borel reducibility) as n increases.
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RCFd : Countable archimedean real closed fields
(Joint work with Fokina, Friedman, Rossegger, & San Mauro.)

RCFd = {D ∈ 2ω : D is an archimedean RCF of trans. degree d}.

Two fields in RCFd are isomorphic iff they fill the same cuts in R.

Baire space ωω is computably homeomorphic to the space of all
transcendental x ∈ R. Let g,h be E-equivalent if they generate the
same (strict left) Dedekind cuts. For d = 1, we can list out the cuts
generated by a given g ∈ ωω (as elements of 2ω). Thus RCF1/∼= is
classified by ωω/E , which computably reduces to Eset on 2ω.

For d > 1, the same procedure works: parse each g ∈ ωω into d
distinct functions g[i], for i < d , and use g[i] to define a real number
trancendental over the preceding ones.

Questions: Do these get harder as d increases? And how do they
compare with the classes TFAb∗n/∼=?
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Properties of TFAbn and RCFd

All these structures (except in RCFω) are relatively computably
categorical, but for n,d > 0, they all require constants. Categoricity
questions are less interesting here.

The E-equivalence classes in 2ω/E (for TFAb∗n) and ωω/E (for RCFd )
all have measure 0. So we do get measures on TFAb∗n and on RCFd
from those on Cantor and Baire space.

Question: what about randomness? On TFAb1, the relation E0
respects all reasonable notions of randomness, so it makes sense to
define randomness in TFAb1. It seems likely that this holds in TFAbn
as well, and in RCFd for d < ω.
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