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Background

Let K be an ACF0 (or a RCF).

• K [t] is ring of formal power series.

• Expand K [t] to the field of Laurent series K (t).

• Expand K (t) to the algebraically closed field K{t} of Puiseux series.

Definition

A Puiseux series (over K ) is a formal sum s =
∑

i≥k ai t
i
n , where n ∈ N+,

k ∈ Z and each ai ∈ K . The weight w(s) of s is the exponent of the first
non-zero term in s, and is ∞ if s = 0.

That is, a Puiseux series is a Laurent series in t
1
n for some positive n.

When K is RCF, think of t as an infinitesimal.

Theorem (Newton, Puiseux)

If K is ACF0 (or RCF), the K{t} is ACF0 (or RCF).
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Main question

• Fix a countable (computable) ACF0 K .

• A Puiseux series is a formal sum s =
∑

i≥k ai t
i
n , where n ∈ N+,

k ∈ Z and each ai ∈ K .

For a polynomial p(x) = Anx
n + · · ·+ A1x + A0 with Ai ∈ K{t}, how

hard is it to find a root r ∈ K{t}?

Represent Puiseux series by s : ω → K ×Q such that if s(m) = 〈am, qm〉,
then s represents the series

∑
m∈ω amt

qm . We require that qm increases
with m and there is a uniform bound on the size of the denominators of
the qm terms. Note that the qm terms are unbounded.
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Represent Puiseux series by s : ω → K ×Q such that if s(m) = 〈am, qm〉,
then qm increases with m and there is a uniform bound on the size of the
denominators of the qm terms.

• Addition and multiplication of Puiseux series are computable.

• Equality is Π0
1.

• Determining w(s) is in general ∆0
2, but there is a uniform computable

procedure to find w(s) for any s 6= 0.

• For any q ∈ Q, determining whether w(s) ≥ q is computable.
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Q: Given A0, . . . ,An ∈ K{t}, how difficult is it to compute a root of

p(x) = A0 + A1x + · · ·+ Anx
n ?

Answer 1. The classical algebraic geometry literature gives a uniform ∆0
2

procedure that will construct a root by initial segments

a0t
q0

a0t
q0 + a1t

q1

a0t
q0 + a1t

q1 + a2t
q2

with q0 < q1 < q2 < · · · and each ai 6= 0. Furthermore, if we reach a root
at a finite stage, the procedure will terminate and declare the root
complete. Any uniform procedure with this termination feature is ∆0

2 hard,
so the classical result is sharp in this sense.
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Answer 2. We can do better if we drop uniformity and termination
conditions.

Theorem (Knight, Lange and Solomon)

For any countable ACF0 K and any nonconstant polynomial
p(x) = A0 + · · ·+ Anx

n over K{t}, p(x) has a root computable from K
and the coefficients A0, . . . ,An.

In particular, the Newton-Puiseux theorem holds in every Turing ideal.

Conjecture

There is a uniform computable procedure that will produce roots for any
nonconstant polynomial p(x) from K and the coefficients A0, . . . ,An.

• This procedure will not have the termination property.

• There is no such uniform procedure which will also work on the
constant polynomial p(x) = 0.
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Hahn fields

Let K be an ACF0 (or RCF) and let G be a divisible ordered abelian
group. The Hahn field K ((G )) consists of formal sum

s =
∑
g∈I

ag t
g

where I ⊆ G is well ordered and each ag ∈ K .

• The support of s is Supp(s) = {g ∈ I : ag 6= 0}.
• The length of s is the order type of Supp(s).

• The weight w(s) of s is the least g ∈ I such that ag 6= 0, and is ∞ if
s = 0.

Theorem (Maclane)

K ((G )) is an ACF0 (or an RCF if K is RCF).
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Given p(x) = A0 + A1x + · · ·+ Anx
n over K ((G )), how complicated are

the roots of p(x)?

Theorem (Knight and Lange)

If each coefficient Ai has countable length αi and γ is a limit ordinal such
that αi < γ, then the roots of p(x) all have length less than ωω

γ
.

• This result can be extended to uncountable ordinals.

• Maclane’s theorem about Hahn fields holds in any admissible set.

• We would like a finer analysis of the complexity of roots.
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We represent an element of K ((G )) by a function s : G → K such that

Supp(s) = {g ∈ G : s(g) 6= 0} is well ordered.

• Addition is computable.

• Computing multiplication, equality and weights are all uniformly ∆0
2.

Partial results on the complexity of finding roots in Puiseux and Hahn fields Reed Solomon (with Julia Knight and Karen Lange)



Given p(x) = A0 + A1x + · · ·+ Anx
n over K ((G )), we want to uniformly

produce initial segments rα ∈ K ((G )) of a root r

r0 = 0

r1 = a1t
ν1

r2 = a1t
ν1 + a2t

ν2

...

rω =
∑
n∈ω

ant
νn

rω+1 = rω + aωt
νω

...

Moreover, we would like to terminate the process when we complete the
root. At stage α+ 1, either we declare rα is a root, or we produce the next
non-zero term in a root.
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Let f be a function such that it is uniformly ∆0
f (α) to produce rα.

Lemma (Knight, Lange and Solomon)

• For a limit ordinal α, f (α) = supβ<α f (β) + 1.

• For a successor β, write β = α + n with α a limit ordinal. Then
f (β) = f (α) + 1.

• r0 is uniformly ∆0
1

• r1, r2, . . . are each uniformly ∆0
2

• rω is uniformly ∆0
3

• rω+1, rω+2, . . . are each uniformly ∆0
4.

Up to this point, we know the complexity results are sharp. Once we get
to the ∆0

5 bound on rω+ω, we do not know whether the bound is sharp,
but we do know that our current methods will not work to show sharpness.
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Thank you!
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