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Algorithmic randomness relative to an oracle

Definition
A Σ0

1〈A〉 class U is a subset of 2ω given by U = [W ]≺ where W ≤e A.

Definition
1 An 〈A〉-test is a uniform sequence of Σ0

1〈A〉 classes {Vn}n<ω such that
µVn ≤ 2−n for every n.

2 A sequence Z ∈ 2ω passes the test V if Z /∈
⋂
n<ω Vn.

3 The sequence Z is 〈A〉-random if it passes all 〈A〉-tests.

Z is 〈A⊕A〉-random if and only if Z is A-random.
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Equivalent forms

Definition
A Solovay 〈A〉-test is a uniform sequence of Σ0

1〈A〉 classes {Vn}n<ω such
that

∑
n µVn <∞.

Z passes a Solovay 〈A〉-test {Vn}n<ω if Z is in only finitely many members
of the test.

Definition
A Kučera 〈A〉-test is a Σ0

1〈A〉 class V with µV < 1.
Z passes a Kučera 〈A〉-test V if not every tail of Z is in V .

Theorem
Z is 〈A〉-random if and only

Z passes every Solovay 〈A〉-test.

Z passes every Kučera 〈A〉-test.
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Characterizing 〈A〉-randomness via (super)martingales
Recall that a function d : 2<ω → R≥0 is a

1 martingale if for every σ ∈ 2<ω we have that d(σ) = d(σ0)+d(σ1)
2 ;

2 super martingale if for every σ ∈ 2<ω we have that d(σ) ≥ d(σ0)+d(σ1)
2 .

Definition
A (super)martingale d is 〈A〉-enumerable if

Ud = {(σ, q) | q ∈ Q & d(σ) > q} ≤e A.

Theorem
Z is 〈A〉-random if and only no 〈A〉-enumerable (super)martingale succeeds
on Z.

We can define d succeeds on Z as:
lim supn d(Z � n) =∞ or as
limn d(Z � n) =∞.
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Comparing 〈A〉-randomness to randomness relative to total
oracles

Theorem

For any set A and sequence Z, consider the following “relative randomness”
notions:

1 Z is X-random for some X such that A ≤e X ⊕X (upwards
〈A〉-random),

2 Z is 〈A〉-random,

3 Z is X-random for every X such that X ⊕X ≤e A (downwards
〈A〉-random).

Then (1)⇒ (2)⇒ (3).

Furthermore, each of these implications can be strict.
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Lowness for randomness

Definition
A set A is low for randomness if every 1-random is 〈A〉-random;

Proposition

The following two conditions are equivalent:
1 A is low for randomness.
2 Every Σ0

1〈A〉 class U with µU < 1 is covered by a Σ0
1 class V with

µV < 1.

Proposition
Every 1-generic set is low for randomness.

Every semi-recursive set is low for randomness.
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〈A〉-randomness cannot be expressed through total oracles

Proposition

If A is weakly 1-generic relative to Z and A ≤e X ⊕X then Z is not
X-random.

Fix a weakly 2-generic set A.

A is weakly 1-generic relative to Chaitin’s Ω, so Ω is not random relative
to any total oracle above A.

A is 1-generic and hence low for randomness, so Ω is 〈A〉-random.

Proposition
If X ≤e A then X is not 〈A〉-random.

Fix A such that A is 1-random and of A is of quasiminimal degree.

A is random with respect to every total oracle below A.

A is not 〈A〉-random.
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〈self〉-PA sets

Recall, that a Π0
1〈A〉 class is the complement of some Σ0

1〈A〉 class.

Definition
An enumeration oracle 〈A〉 is PA above 〈B〉 if every nonempty Π0

1〈B〉 class
contains an element Z such that Z ⊕ Z ≤e A.

A is 〈self〉-PA if 〈A〉 is PA above 〈A〉.

Theorem
1 There is a 〈self〉-PA set A.
2 If A is 〈self〉-PA then the set of total degrees below A is a Scott set.
3 Every countable Scott set can be realized as the set of total degrees

below a 〈self〉-PA set.
4 If X is PA above Y if and only if then there is a 〈self〉-PA A such that
Y ⊕ Y <e A <e X ⊕X .
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Randomness properties of 〈self〉-PA sets

Proposition
If A is 〈self〉-PA then there is no universal 〈A〉-test.

Proposition

If A is 〈self〉-PA then every Σ0
1〈A〉 class of measure < 1 is covered by a

Σ0
1(Y ) class of measure < 1, for some Y such that Y ⊕ Y ≤e A.

If A is 〈self〉-PA then Z is 〈A〉-random if an only if Z is downwards
〈A〉-random.

Proposition
If A has continuous degree, then there is a universal 〈A〉-test.

If A has continuous degree, then Z is 〈A〉-random iff Z is upwards
〈A〉-random.
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Set randomness notions
Definition

1 A Martin-Löf set 〈A〉-test is a sequence {Wn}n<ω that is uniformly
enumeration reducible to A, such that for every n wt(Wn) ≤ 2−n.

2 A Solovay set 〈A〉-test is a set W ≤e A with finite weight.

Here wt(W ) =
∑

σ∈W 2−|σ|.

Theorem
Upwards 〈A〉-randomness⇒
〈A〉-randomness⇒ Solovay set 〈A〉-randomness⇒ML set 〈A〉-randomness
⇒ Downwards 〈A〉-randomness.

Theorem
There are sets Z and A such that Z is not 〈A〉-random, but Z is Solovay set
〈A〉-random.
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⇒ Downwards 〈A〉-randomness.

Theorem
There are sets Z and A such that Z is not 〈A〉-random, but Z is Solovay set
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An incompressibility approach to randomness

A discrete measure is a function m : 2<ω → Q such that
∑

σ∈2<ω m(σ) ≤ 1.

Definition
A discrete measure m is 〈A〉-enumerable if Um = {(σ, q) |m(σ) > q} ≤e A.

Km(σ) = − log(m(σ)).

Theorem
Z is Solovay set 〈A〉-random if and only if Km(Z � n)− n→∞ for every
〈A〉-enumerable discrete measure m.

Z is ML set 〈A〉-random if and only if Km(Z � n) ≥+ n for every
〈A〉-enumerable discrete measure m.
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The end

Thank you!
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