Randomness relative to an enumeration oracle

Mariya I. Soskova¹

joint work with Joe Miller

University of Wisconsin-Madison

Oberwolfach Workshop Computability Theory 2018

¹Supported by Bulgaria National Science Fund.

Algorithmic randomness relative to an oracle

Definition

A $\Sigma_1^0 \langle A \rangle$ class U is a subset of 2^ω given by $U = [W]^{\prec}$ where $W \leq_e A$.

Algorithmic randomness relative to an oracle

Definition

A $\Sigma_1^0\langle A\rangle$ class U is a subset of 2^ω given by $U=[W]^{\prec}$ where $W\leq_e A$.

Definition

- An $\langle A \rangle$ -test is a uniform sequence of $\Sigma^0_1 \langle A \rangle$ classes $\{V_n\}_{n < \omega}$ such that $\mu V_n \leq 2^{-n}$ for every n.
- **2** A sequence $Z \in 2^{\omega}$ passes the test V if $Z \notin \bigcap_{n < \omega} V_n$.
- **1** The sequence Z is $\langle A \rangle$ -random if it passes all $\langle A \rangle$ -tests.

Algorithmic randomness relative to an oracle

Definition

A $\Sigma_1^0\langle A\rangle$ class U is a subset of 2^ω given by $U=[W]^{\prec}$ where $W\leq_e A$.

Definition

- An $\langle A \rangle$ -test is a uniform sequence of $\Sigma_1^0 \langle A \rangle$ classes $\{V_n\}_{n < \omega}$ such that $\mu V_n \leq 2^{-n}$ for every n.
- **2** A sequence $Z \in 2^{\omega}$ passes the test V if $Z \notin \bigcap_{n < \omega} V_n$.
- **1** The sequence Z is $\langle A \rangle$ -random if it passes all $\langle A \rangle$ -tests.

Z is $\langle A \oplus \overline{A} \rangle$ -random if and only if Z is A-random.

Equivalent forms

Definition

A Solovay $\langle A \rangle$ -test is a uniform sequence of $\Sigma_1^0 \langle A \rangle$ classes $\{V_n\}_{n < \omega}$ such that $\sum_n \mu V_n < \infty$.

Z passes a Solovay $\langle A \rangle$ -test $\{V_n\}_{n < \omega}$ if Z is in only finitely many members of the test.

Equivalent forms

Definition

A Solovay $\langle A \rangle$ -test is a uniform sequence of $\Sigma_1^0 \langle A \rangle$ classes $\{V_n\}_{n < \omega}$ such that $\sum_n \mu V_n < \infty$.

Z passes a Solovay $\langle A \rangle$ -test $\{V_n\}_{n < \omega}$ if Z is in only finitely many members of the test.

Definition

A Kučera $\langle A \rangle$ -test is a $\Sigma_1^0 \langle A \rangle$ class V with $\mu V < 1$.

Z passes a Kučera $\langle A \rangle$ -test V if not every tail of Z is in V.

Equivalent forms

Definition

A Solovay $\langle A \rangle$ -test is a uniform sequence of $\Sigma_1^0 \langle A \rangle$ classes $\{V_n\}_{n < \omega}$ such that $\sum_n \mu V_n < \infty$.

Z passes a Solovay $\langle A \rangle$ -test $\{V_n\}_{n < \omega}$ if Z is in only finitely many members of the test.

Definition

A Kučera $\langle A \rangle$ -test is a $\Sigma_1^0 \langle A \rangle$ class V with $\mu V < 1$.

Z passes a Kučera $\langle A \rangle$ -test V if not every tail of Z is in V.

Theorem

Z is $\langle A \rangle$ -random if and only

- ullet Z passes every Solovay $\langle A \rangle$ -test.
- ullet Z passes every Kučera $\langle A \rangle$ -test.

Recall that a function $d:2^{<\omega}\to\mathbb{R}^{\geq 0}$ is a

- **•** martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) = \frac{d(\sigma 0) + d(\sigma 1)}{2}$;
- **②** super martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) \geq \frac{d(\sigma 0) + d(\sigma 1)}{2}$.

- Recall that a function $d:2^{<\omega}\to\mathbb{R}^{\geq 0}$ is a
 - **1** martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) = \frac{d(\sigma 0) + d(\sigma 1)}{2}$;
 - ② super martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) \geq \frac{d(\sigma 0) + d(\sigma 1)}{2}$.

Definition

A (super)martingale d is $\langle A \rangle$ -enumerable if

$$U_d = \{ (\sigma, q) \mid q \in \mathbb{Q} \& d(\sigma) > q \} \leq_e A.$$

Recall that a function $d:2^{<\omega}\to\mathbb{R}^{\geq 0}$ is a

- **•** martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) = \frac{d(\sigma 0) + d(\sigma 1)}{2}$;
- ② super martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) \geq \frac{d(\sigma 0) + d(\sigma 1)}{2}$.

Definition

A (super)martingale d is $\langle A \rangle$ -enumerable if

$$U_d = \{ (\sigma, q) \mid q \in \mathbb{Q} \& d(\sigma) > q \} \leq_e A.$$

Theorem

Z is $\langle A \rangle$ -random if and only no $\langle A \rangle$ -enumerable (super)martingale *succeeds* on Z.

Characterizing $\langle A \rangle$ -randomness via (super)martingales Recall that a function $d: 2^{<\omega} \to \mathbb{R}^{\geq 0}$ is a

- **①** martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) = \frac{d(\sigma 0) + d(\sigma 1)}{2}$;
- $lacksquare{1}{2}$ super martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) \geq \frac{d(\sigma 0) + d(\sigma 1)}{2}$.

Definition

A (super)martingale d is $\langle A \rangle$ -enumerable if

$$U_d = \{ (\sigma, q) \mid q \in \mathbb{Q} \& d(\sigma) > q \} \leq_e A.$$

Theorem

Z is $\langle A \rangle$ -random if and only no $\langle A \rangle$ -enumerable (super)martingale *succeeds* on Z.

We can define d succeeds on Z as:

•
$$\limsup_{n} d(Z \upharpoonright n) = \infty$$

- Recall that a function $d:2^{<\omega}\to\mathbb{R}^{\geq0}$ is a
 - **1** martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) = \frac{d(\sigma 0) + d(\sigma 1)}{2}$;
 - ② super martingale if for every $\sigma \in 2^{<\omega}$ we have that $d(\sigma) \geq \frac{d(\sigma 0) + d(\sigma 1)}{2}$.

Definition

A (super)martingale d is $\langle A \rangle$ -enumerable if

$$U_d = \{ (\sigma, q) \mid q \in \mathbb{Q} \& d(\sigma) > q \} \leq_e A.$$

Theorem

Z is $\langle A \rangle$ -random if and only no $\langle A \rangle$ -enumerable (super)martingale *succeeds* on Z.

We can define d succeeds on Z as:

- $\limsup_{n} d(Z \upharpoonright n) = \infty$ or as
- $\lim_n d(Z \upharpoonright n) = \infty$.

Comparing $\langle A \rangle$ -randomness to randomness relative to total oracles

Theorem

For any set A and sequence Z, consider the following "relative randomness" notions:

- ① Z is X-random for some X such that $A \leq_e X \oplus \overline{X}$ (upwards $\langle A \rangle$ -random),
- \bigcirc Z is $\langle A \rangle$ -random,
- § Z is X-random for every X such that $X \oplus \overline{X} \leq_e A$ (downwards $\langle A \rangle$ -random).

Then $(1) \Rightarrow (2) \Rightarrow (3)$.

Comparing $\langle A \rangle$ -randomness to randomness relative to total oracles

Theorem

For any set A and sequence Z, consider the following "relative randomness" notions:

- ① Z is X-random for some X such that $A \leq_e X \oplus \overline{X}$ (upwards $\langle A \rangle$ -random),
- \bigcirc Z is $\langle A \rangle$ -random,
- § Z is X-random for every X such that $X \oplus \overline{X} \leq_e A$ (downwards $\langle A \rangle$ -random).

Then $(1) \Rightarrow (2) \Rightarrow (3)$.

Furthermore, each of these implications can be strict.

Definition

A set A is low for randomness if every 1-random is $\langle A \rangle$ -random;

Definition

A set A is low for randomness if every 1-random is $\langle A \rangle$ -random;

Proposition

The following two conditions are equivalent:

- A is low for randomness.
- ② Every $\Sigma_1^0\langle A\rangle$ class U with $\mu U<1$ is covered by a Σ_1^0 class V with $\mu V<1$.

Definition

A set A is low for randomness if every 1-random is $\langle A \rangle$ -random;

Proposition

The following two conditions are equivalent:

- A is low for randomness.
 - ② Every $\Sigma_1^0\langle A\rangle$ class U with $\mu U<1$ is covered by a Σ_1^0 class V with $\mu V<1$.

Proposition

Every 1-generic set is low for randomness.

Definition

A set A is low for randomness if every 1-random is $\langle A \rangle$ -random;

Proposition

The following two conditions are equivalent:

- A is low for randomness.
 - ② Every $\Sigma_1^0\langle A\rangle$ class U with $\mu U<1$ is covered by a Σ_1^0 class V with $\mu V<1$.

Proposition

Every 1-generic set is low for randomness.

Every semi-recursive set is low for randomness.

Proposition

If A is weakly 1-generic relative to Z and $A \leq_e X \oplus \overline{X}$ then Z is not X-random.

Proposition

If A is weakly 1-generic relative to Z and $A \leq_e X \oplus \overline{X}$ then Z is not X-random.

Fix a weakly 2-generic set A.

Proposition

If A is weakly 1-generic relative to Z and $A \leq_e X \oplus \overline{X}$ then Z is not X-random.

Fix a weakly 2-generic set A.

• A is weakly 1-generic relative to Chaitin's Ω , so Ω is not random relative to any total oracle above A.

Proposition

If A is weakly 1-generic relative to Z and $A \leq_e X \oplus \overline{X}$ then Z is not X-random.

Fix a weakly 2-generic set A.

- A is weakly 1-generic relative to Chaitin's Ω , so Ω is not random relative to any total oracle above A.
- A is 1-generic and hence low for randomness, so Ω is $\langle A \rangle$ -random.

Proposition

If A is weakly 1-generic relative to Z and $A \leq_e X \oplus \overline{X}$ then Z is not X-random.

Fix a weakly 2-generic set A.

- A is weakly 1-generic relative to Chaitin's Ω , so Ω is not random relative to any total oracle above A.
- A is 1-generic and hence low for randomness, so Ω is $\langle A \rangle$ -random.

Proposition

If $X \leq_e A$ then X is not $\langle A \rangle$ -random.

Proposition

If A is weakly 1-generic relative to Z and $A \leq_e X \oplus \overline{X}$ then Z is not X-random.

Fix a weakly 2-generic set A.

- A is weakly 1-generic relative to Chaitin's Ω , so Ω is not random relative to any total oracle above A.
- A is 1-generic and hence low for randomness, so Ω is $\langle A \rangle$ -random.

Proposition

If $X \leq_e A$ then X is not $\langle A \rangle$ -random.

Fix A such that A is 1-random and of A is of quasiminimal degree.

Proposition

If A is weakly 1-generic relative to Z and $A \leq_e X \oplus \overline{X}$ then Z is not X-random.

Fix a weakly 2-generic set A.

- A is weakly 1-generic relative to Chaitin's Ω , so Ω is not random relative to any total oracle above A.
- A is 1-generic and hence low for randomness, so Ω is $\langle A \rangle$ -random.

Proposition

If $X \leq_e A$ then X is not $\langle A \rangle$ -random.

Fix A such that A is 1-random and of A is of quasiminimal degree.

• A is random with respect to every total oracle below A.

Proposition

If A is weakly 1-generic relative to Z and $A \leq_e X \oplus \overline{X}$ then Z is not X-random.

Fix a weakly 2-generic set A.

- A is weakly 1-generic relative to Chaitin's Ω , so Ω is not random relative to any total oracle above A.
- A is 1-generic and hence low for randomness, so Ω is $\langle A \rangle$ -random.

Proposition

If $X \leq_e A$ then X is not $\langle A \rangle$ -random.

Fix A such that A is 1-random and of A is of quasiminimal degree.

- ullet A is random with respect to every total oracle below A.
- A is not $\langle A \rangle$ -random.

Recall, that a $\Pi^0_1\langle A\rangle$ class is the complement of some $\Sigma^0_1\langle A\rangle$ class.

Recall, that a $\Pi^0_1\langle A\rangle$ class is the complement of some $\Sigma^0_1\langle A\rangle$ class.

Definition

An enumeration oracle $\langle A \rangle$ is PA above $\langle B \rangle$ if every nonempty $\Pi_1^0 \langle B \rangle$ class contains an element Z such that $Z \oplus \overline{Z} \leq_e A$.

Recall, that a $\Pi^0_1\langle A\rangle$ class is the complement of some $\Sigma^0_1\langle A\rangle$ class.

Definition

An enumeration oracle $\langle A \rangle$ is PA above $\langle B \rangle$ if every nonempty $\Pi_1^0 \langle B \rangle$ class contains an element Z such that $Z \oplus \overline{Z} \leq_e A$.

A is $\langle self \rangle$ -PA if $\langle A \rangle$ is PA above $\langle A \rangle$.

$\langle self \rangle$ -PA sets

Recall, that a $\Pi^0_1\langle A\rangle$ class is the complement of some $\Sigma^0_1\langle A\rangle$ class.

Definition

An enumeration oracle $\langle A \rangle$ is PA above $\langle B \rangle$ if every nonempty $\Pi_1^0 \langle B \rangle$ class contains an element Z such that $Z \oplus \overline{Z} \leq_e A$.

A is $\langle self \rangle$ -PA if $\langle A \rangle$ is PA above $\langle A \rangle$.

Theorem

• There is a $\langle \text{self} \rangle$ -PA set A.

Recall, that a $\Pi^0_1\langle A\rangle$ class is the complement of some $\Sigma^0_1\langle A\rangle$ class.

Definition

An enumeration oracle $\langle A \rangle$ is PA above $\langle B \rangle$ if every nonempty $\Pi_1^0 \langle B \rangle$ class contains an element Z such that $Z \oplus \overline{Z} \leq_e A$.

A is $\langle self \rangle$ -PA if $\langle A \rangle$ is PA above $\langle A \rangle$.

Theorem

- There is a $\langle \text{self} \rangle$ -PA set A.
- ② If A is $\langle self \rangle$ -PA then the set of total degrees below A is a Scott set.

Recall, that a $\Pi^0_1\langle A\rangle$ class is the complement of some $\Sigma^0_1\langle A\rangle$ class.

Definition

An enumeration oracle $\langle A \rangle$ is PA above $\langle B \rangle$ if every nonempty $\Pi_1^0 \langle B \rangle$ class contains an element Z such that $Z \oplus \overline{Z} \leq_e A$.

A is $\langle self \rangle$ -PA if $\langle A \rangle$ is PA above $\langle A \rangle$.

Theorem

- There is a $\langle \text{self} \rangle$ -PA set A.
- **②** If A is $\langle \text{self} \rangle$ -PA then the set of total degrees below A is a Scott set.
- Severy countable Scott set can be realized as the set of total degrees below a \(\self\)-PA set.

Recall, that a $\Pi_1^0\langle A\rangle$ class is the complement of some $\Sigma_1^0\langle A\rangle$ class.

Definition

An enumeration oracle $\langle A \rangle$ is PA above $\langle B \rangle$ if every nonempty $\Pi_1^0 \langle B \rangle$ class contains an element Z such that $Z \oplus \overline{Z} \leq_e A$.

A is $\langle self \rangle$ -PA if $\langle A \rangle$ is PA above $\langle A \rangle$.

Theorem

- There is a $\langle \text{self} \rangle$ -PA set A.
- **②** If A is $\langle \text{self} \rangle$ -PA then the set of total degrees below A is a Scott set.
- Severy countable Scott set can be realized as the set of total degrees below a ⟨self⟩-PA set.
- $\textbf{ 1f } X \text{ is PA above } Y \text{ if and only if then there is a } \langle \text{self} \rangle \text{-PA } A \text{ such that } Y \oplus \overline{Y} <_e A <_e X \oplus \overline{X}.$

Randomness properties of $\langle self \rangle$ -PA sets

Proposition

If A is $\langle \mathrm{self} \rangle\text{-PA}$ then there is no universal $\langle A \rangle\text{-test.}$

Randomness properties of $\langle self \rangle$ -PA sets

Proposition

If A is $\langle \text{self} \rangle$ -PA then there is no universal $\langle A \rangle$ -test.

Proposition

If A is $\langle \mathrm{self} \rangle$ -PA then every $\Sigma^0_1 \langle A \rangle$ class of measure <1 is covered by a $\Sigma^0_1(Y)$ class of measure <1, for some Y such that $Y\oplus \overline{Y} \leq_e A$.

Randomness properties of $\langle self \rangle$ -PA sets

Proposition

If A is $\langle \text{self} \rangle$ -PA then there is no universal $\langle A \rangle$ -test.

Proposition

If A is $\langle \operatorname{self} \rangle$ -PA then every $\Sigma_1^0 \langle A \rangle$ class of measure <1 is covered by a $\Sigma_1^0(Y)$ class of measure <1, for some Y such that $Y\oplus \overline{Y} \leq_e A$.

If A is $\langle \text{self} \rangle$ -PA then Z is $\langle A \rangle$ -random if an only if Z is downwards $\langle A \rangle$ -random.

Randomness properties of $\langle self \rangle$ -PA sets

Proposition

If A is $\langle \text{self} \rangle$ -PA then there is no universal $\langle A \rangle$ -test.

Proposition

If A is $\langle \operatorname{self} \rangle$ -PA then every $\Sigma_1^0 \langle A \rangle$ class of measure <1 is covered by a $\Sigma_1^0(Y)$ class of measure <1, for some Y such that $Y\oplus \overline{Y} \leq_e A$.

If A is $\langle \text{self} \rangle$ -PA then Z is $\langle A \rangle$ -random if an only if Z is downwards $\langle A \rangle$ -random.

Proposition

If A has continuous degree, then there is a universal $\langle A \rangle$ -test.

Randomness properties of $\langle self \rangle$ -PA sets

Proposition

If A is $\langle \text{self} \rangle$ -PA then there is no universal $\langle A \rangle$ -test.

Proposition

If A is $\langle \operatorname{self} \rangle$ -PA then every $\Sigma_1^0 \langle A \rangle$ class of measure <1 is covered by a $\Sigma_1^0(Y)$ class of measure <1, for some Y such that $Y \oplus \overline{Y} \leq_e A$.

If A is $\langle \text{self} \rangle$ -PA then Z is $\langle A \rangle$ -random if an only if Z is downwards $\langle A \rangle$ -random.

Proposition

If A has continuous degree, then there is a universal $\langle A \rangle$ -test.

If A has continuous degree, then Z is $\langle A \rangle$ -random iff Z is upwards $\langle A \rangle$ -random.

Definition

- A Martin-Löf set $\langle A \rangle$ -test is a sequence $\{W_n\}_{n < \omega}$ that is uniformly enumeration reducible to A, such that for every n wt $(W_n) \leq 2^{-n}$.
- **2** A Solovay set $\langle A \rangle$ -test is a set $W \leq_e A$ with finite weight.

Definition

- A Martin-Löf set $\langle A \rangle$ -test is a sequence $\{W_n\}_{n < \omega}$ that is uniformly enumeration reducible to A, such that for every n wt $(W_n) \leq 2^{-n}$.
- **2** A Solovay set $\langle A \rangle$ -test is a set $W \leq_e A$ with finite weight.

Here
$$\operatorname{wt}(W) = \sum_{\sigma \in W} 2^{-|\sigma|}$$
.

Definition

- A Martin-Löf set $\langle A \rangle$ -test is a sequence $\{W_n\}_{n < \omega}$ that is uniformly enumeration reducible to A, such that for every n wt $(W_n) \leq 2^{-n}$.
- **2** A Solovay set $\langle A \rangle$ -test is a set $W \leq_e A$ with finite weight.

Here
$$\operatorname{wt}(W) = \sum_{\sigma \in W} 2^{-|\sigma|}$$
.

Theorem

 $\begin{array}{l} \text{Upwards $\langle A \rangle$-randomness} \Rightarrow \\ \langle A \rangle\text{-randomness} \Rightarrow \text{Solovay set $\langle A \rangle$-randomness} \Rightarrow \text{ML set $\langle A \rangle$-randomness} \\ \Rightarrow \text{Downwards $\langle A \rangle$-randomness}. \end{array}$

Definition

- A Martin-Löf set $\langle A \rangle$ -test is a sequence $\{W_n\}_{n < \omega}$ that is uniformly enumeration reducible to A, such that for every n wt $(W_n) \leq 2^{-n}$.
- **2** A Solovay set $\langle A \rangle$ -test is a set $W \leq_e A$ with finite weight.

Here
$$\operatorname{wt}(W) = \sum_{\sigma \in W} 2^{-|\sigma|}$$
.

Theorem

Upwards $\langle A \rangle$ -randomness \Rightarrow

 $\langle A \rangle \text{-randomness} \Rightarrow \text{Solovay set } \langle A \rangle \text{-randomness} \Rightarrow \text{ML set } \langle A \rangle \text{-randomness}$

 \Rightarrow Downwards $\langle A \rangle$ -randomness.

Theorem

There are sets Z and A such that Z is not $\langle A \rangle$ -random, but Z is Solovay set $\langle A \rangle$ -random.

A discrete measure is a function $m: 2^{<\omega} \to \mathbb{Q}$ such that $\sum_{\sigma \in 2^{<\omega}} m(\sigma) \leq 1$.

A discrete measure is a function $m: 2^{<\omega} \to \mathbb{Q}$ such that $\sum_{\sigma \in 2^{<\omega}} m(\sigma) \leq 1$.

Definition

A discrete measure m is $\langle A \rangle$ -enumerable if $U_m = \{(\sigma, q) \mid m(\sigma) > q\} \leq_e A$.

A discrete measure is a function $m: 2^{<\omega} \to \mathbb{Q}$ such that $\sum_{\sigma \in 2^{<\omega}} m(\sigma) \leq 1$.

Definition

A discrete measure m is $\langle A \rangle$ -enumerable if $U_m = \{(\sigma, q) \mid m(\sigma) > q\} \leq_e A$.

$$K_m(\sigma) = -\log(m(\sigma)).$$

A discrete measure is a function $m: 2^{<\omega} \to \mathbb{Q}$ such that $\sum_{\sigma \in 2^{<\omega}} m(\sigma) \leq 1$.

Definition

A discrete measure m is $\langle A \rangle$ -enumerable if $U_m = \{(\sigma,q) \mid m(\sigma) > q\} \leq_e A$.

$$K_m(\sigma) = -\log(m(\sigma)).$$

Theorem

Z is Solovay set $\langle A \rangle$ -random if and only if $K_m(Z \upharpoonright n) - n \to \infty$ for every $\langle A \rangle$ -enumerable discrete measure m.

A discrete measure is a function $m \colon 2^{<\omega} \to \mathbb{Q}$ such that $\sum_{\sigma \in 2^{<\omega}} m(\sigma) \le 1$.

Definition

A discrete measure m is $\langle A \rangle$ -enumerable if $U_m = \{(\sigma, q) \mid m(\sigma) > q\} \leq_e A$.

$$K_m(\sigma) = -\log(m(\sigma)).$$

Theorem

Z is Solovay set $\langle A \rangle$ -random if and only if $K_m(Z \upharpoonright n) - n \to \infty$ for every $\langle A \rangle$ -enumerable discrete measure m.

Z is ML set $\langle A \rangle$ -random if and only if $K_m(Z \upharpoonright n) \geq^+ n$ for every $\langle A \rangle$ -enumerable discrete measure m.

The end

Thank you!