Determined Borel codes in Reverse Math

Linda Brown Westrick University of Connecticut Joint with Astor, Dzhafarov, Montalbán and Solomon

> January 12, 2018 Oberwolfach Computability Workshop

L.B.Westrick

Determined Borel codes

January 12, 2018 1 / 18

The Borel subsets of a topological space are the smallest collection which

- contains the open sets
- is closed under complements and countable unions.

(and thus countable intersections.)

- A *Borel code* is a well-founded tree with
 - \bullet inner nodes labeled by \cup or \cap
 - leaves labeled by open sets or their complements.

(note the negations pushed to the leaves.)

Every Borel set can be described by a Borel code.

Consider Borel subsets of 2^{ω} in Reverse Math (RM).

Definition (RM): A Borel code is a well-founded tree.

- With conventions to determine \cup , \cap and leaf labels.
- If ACA_0 is around, you can assume the tree is labeled.
- The leaves can be labeled with clopen sets [p] with $p\in 2^{<\omega},$ and their complements.

Observe it is easy to get a code for the complement of a set.

- Exchange all \cup and \cap .
- Complement all leaves.

To determine whether X is in the set coded by T, recursively determine whether X is in the set coded by each subtree.

Definition (RM): If $T \subseteq \omega^{<\omega}$ is a Borel code and $X \in 2^{\omega}$, an evaluation map for X in T is a function $f: T \to \{0, 1\}$ such that

- If σ is a leaf, $f(\sigma) = 1$ if and only if X is in the clopen set associated to σ .
- If σ is a union node, $f(\sigma) = 1$ if and only if $f(\sigma n) = 1$ for some $n \in \omega$.
- If σ is an intersection node, $f(\sigma) = 1$ if and only if $f(\sigma n) = 1$ for all $n \in \omega$.

Evaluation maps can be constructed by *arithmetic transfinite recursion*.

Fact: ATR_0 proves that if T is a Borel code and $X \in 2^{\omega}$, there is an evaluation map f for X in T.

Notation: $X \in [T]$ means X is in the set coded by T. (T is well-founded so there should be no confusion about paths.)

Definition (RM): If T is a Borel code and $X \in 2^{\omega}$, then $X \in [T]$ if there is an evaluation map f for X in T such that $f(\lambda) = 1$.

 $X \in [T]$ is a Σ_1^1 statement.

Fact: ACA_0 proves that if an evaluation map exists, it is unique.

Theorem (Dzhafarov, Flood, Solomon, W 2015): The statement "For every Borel code T, there exist X, f such that f is an evaluation map for X in T" implies ATR_0 .

If f is an evaluation map for X in T, then 1 - f is an evaluation map for X in T's complement.

Corollary: The statement "For every Borel set, either it or its complement is nonempty" is equivalent to ATR_0 over RCA_0 .

Definition: A set $A \subseteq 2^{\omega}$ has the *property of Baire* if there are open sets U and $\{D_n\}_{n \in \omega}$ such that

- Each D_n is dense.
- For all $X \in \cap_n D_n$, $X \in U \Leftrightarrow X \in A$.

Proposition (FDSW): Over RCA_0 , ATR_0 is equivalent to "Every Borel set has the property of Baire."

Proof:

 (\Rightarrow) The standard proof uses arithmetic transfinite recursion.

(\Leftarrow) If a set has the property of Baire, either it or its complement is nonempty.

 (\Leftarrow) is highly unsatisfactory!

How we formalized "Every Borel set has the property of Baire" in RM:

Definition (FDSW): A *Baire code* is open sets $U, V, \{D_n\}_{n \in \omega}$ such that $U \cap V = \emptyset$ and $U \cup V$ and all D_n are dense.

Proposition (FDSW): The following is equivalent to ATR_0 over RCA_0 : "For every Borel code T, there is a Baire code $U, V, \{D_n\}$ such that for all $X \in \cap_n D_n, X \in U \Rightarrow X \in [T]$ and $X \in V \Rightarrow X \in [T\text{-complement}]$." **Definition**: A Borel code T is *determined* if every X has an evaluation map in T. A *determined Borel set* is a Borel set whose code is determined.

This is better:

- $\bullet\,$ In $\mathsf{RCA}_0,$ every determined Borel set or its complement is nonempty.
- $\bullet\,$ "Every determined Borel set has the property of Baire" does not trivially imply $\mathsf{ATR}_0.$

Definition: Let DPB be the statement "Every determined Borel set has the property of Baire."

Question: What is the Reverse Math strength of DPB?

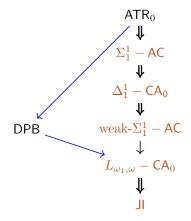
Proposition: Over RCA_0 , DPB implies ACA_0 .

Definition (Montalbán 2006): JI (jump iteration) is the statement "For every ordinal α and every X, if $X^{(\beta)}$ exists for all $\beta < \alpha$, then $X^{(\alpha)}$ exists."

Proposition: Over RCA_0 , DPB implies JI.

In ω -models, ideals that satisfy jump iteration are HYP ideals.

Some landmarks between ATR_0 and JI



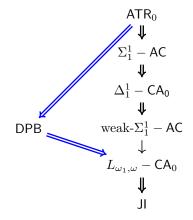
Every principle in orange is a *theory of hyperarithmetic analysis*, meaning all its ω -models are HYP ideals, and for every Y, HYP(Y) is a model. **Theorem 1:** DPB does not hold in *HYP*.

Theorem 2: There is an ω -model of DPB that does not satisfy ATR₀.

Theorem 3: DPB implies the existence of hyperarithmetic generics in ω -models.

(More formally: If \mathcal{I} is a HYP ideal which satisfies DPB, then for every $X \in \mathcal{I}$, there is a $G \in \mathcal{I}$ such that G is Δ_1^1 -generic relative to X.)

Some landmarks between ATR_0 and JI



Theorem 1: DPB does not hold in *HYP*.

Proof sketch:

- Let U_a denote a canonical universal Σ_a^0 set.
- Using overflow, make a computable code for the set

$$\bigcup_{a} U_a \cap \{X : a \text{ is least s.t. } X \le H_a\}.$$

- Add "decorations" to the code to give each H_a -computable set an H_a -computable evaluation map.
- It is now a determined Borel code with no HYP Baire code.

Theorem 2: There is an ω -model of DPB that does not satisfy ATR_0 .

Proof sketch:

- Let $G = \bigoplus_i G_i$ be a Δ_1^1 generic with $\omega_1^G = \omega_1$.
- Let $\mathcal{M} = \bigcup_n \Delta^1_1(\bigoplus_{i < n} G_i)$
- Given a determined Borel code, construct a Baire code to agree with the behavior of the G_i which are generic relative to the code.

DPB implies HYP generics exist in ω -models

Theorem 3: DPB implies the existence of hyperarithmetic generics in ω -models.

(More formally: If \mathcal{M} is a HYP ideal which satisfies DPB, then for every $Z \in \mathcal{M}$, there is a $G \in \mathcal{M}$ such that G is Δ_1^1 -generic relative to Z.)

Proof sketch:

- If \mathcal{M} has Z but no $\Delta_1^1(Z)$ -generics, there is a pseudo-ordinal which \mathcal{M} thinks is well-founded.
- Construct a code for this set by overflow:

 $\bigcup_{a} U_{a} \cap \{X : a \text{ is least s.t. } X \text{ is not generic relative to } H_{a}^{Z}\}$

- Decorate the code.
- Every non- $\Delta_1^1(Z)$ -generic has an evaluation map, but if the set has the property of Baire, any $X \in \bigcap_n D_n$ is $\Delta_1^1(Z)$ -generic.

Where are the following principles located in the zoo?

- The principle(s) " HYP/Δ_1^1 -generics exist" (however one would write that in LSOA).
- Every analytic set has the property of Baire.
- Every determined Borel set is measurable.
- Every determined Borel set has the perfect set property.
- Other theorems involving Borel sets?

- Flood, Dzhafarov, Solomon, Westrick. Effectiveness for the Dual Ramsey Theorem. Submitted.
- Montalbán. Indecomposable linear orderings and hyperarithmetic analysis. Journal of Mathematical Logic. 2006.
- Simpson. Subsystems of Second Order Arithmetic.