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HKSS-Universality
Hirschfeldt, Khoussainov, Shore, and Slinko (2002) introduced

a notion of universality for a class of countable structures.
Here we call this notion HKSS-universality (a formal definition

is given in the appendix).

Inside an HKSS-universal class, one can realize any possible:

I degree spectrum of a structure,

I degree spectrum of a relation,

I d-computable dimension of a computable structure,

I categoricity spectrum of a computable structure.

The following classes are not HKSS-universal:

(a) linear orders;

(b) Boolean algebras.

[Richter 1977, 1981] — for degree spectra;

[Goncharov and Dzgoev 1980; Remmel 1981] — for computable dimensions.

Nikolay Bazhenov Open Question Session 1 / 6



HKSS-Universality
Hirschfeldt, Khoussainov, Shore, and Slinko (2002) introduced

a notion of universality for a class of countable structures.
Here we call this notion HKSS-universality (a formal definition

is given in the appendix).

Inside an HKSS-universal class, one can realize any possible:

I degree spectrum of a structure,

I degree spectrum of a relation,

I d-computable dimension of a computable structure,

I categoricity spectrum of a computable structure.

The following classes are not HKSS-universal:

(a) linear orders;

(b) Boolean algebras.

[Richter 1977, 1981] — for degree spectra;

[Goncharov and Dzgoev 1980; Remmel 1981] — for computable dimensions.

Nikolay Bazhenov Open Question Session 1 / 6



Heyting algebras

A structure H = (H;∨,∧,→, 0, 1) is a Heyting algebra if
(H;∨,∧, 0, 1) is a bounded distributive lattice, and for every
a, b ∈ H, the element a→ b is the greatest element in the set
{x : a ∧ x ≤ b}.

I Every Boolean algebra can be viewed as a Heyting algebra:
(a→ b) = ¬a ∨ b.

I A linear order with the least and the greatest elements is also
a Heyting algebra:

a→ b =

{
1, if a ≤ b,
b, if a > b.
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Computable Heyting algebras

Heyting algebras can realize some interesting
computability-theoretic properties:

I For any Turing degree d, there is a Heyting algebra H such
that DgSp(H) = {c : c ≥ d} [Turlington 2010].

I For a computable successor ordinal α ≥ 3, computable
Heyting algebras realize all possible 0(α)-computable
dimensions [B. 2017].

Theorem (B. 2021)

The class of Heyting algebras with distinguished atoms and
coatoms is HKSS-universal.
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Question 1
Is the class of Heyting algebras HKSS-universal?

One can ask more restricted questions: for example,

Question 1.a
Can computable Heyting algebras realize all possible computable
dimensions?

Note that Turlington (2010) proved that a free Heyting algebra has
computable dimension either 1 or ω.
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Distributive lattices

Hirschfeldt, Khoussainov, Shore, and Slinko (2002) proved that
the class of lattices is HKSS-universal.

In general, the lattices constructed in their paper are
not modular.

Question 2
Is the class of distributive lattices HKSS-universal?

Question 2.a
Can computable distributive lattices realize all possible computable
dimensions?

On a related note, there exists a computably categorical
distributive lattice, which is not relatively ∆0

2-categorical [B.,
Frolov, Kalimullin, and Melnikov 2017].
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Appendix: The formal definition of HKSS-universality

A class of structures K is HKSS-universal if for every
countable, automorphically nontrivial graph G, there exists a
countable, automorphically nontrivial structure SG ∈ K with the
following properties:

(1) DgSp(SG) = DgSp(G).

(2) If G has a computable copy, then:

a. For every Turing degree d, dimd(SG) = dimd(G).
b. For any element c ∈ G, there exists a ∈ SG such that

dim0(SG, a) = dim0(G, c).
c. If R ⊆ dom(G), then there exists a relation Q ⊆ dom(SG)

such that DgSpSG
(Q) = DgSpG(R). In addition, if R is

intrinsically c.e., then so is Q.


