
Is the Mandelbrot set computable?
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The Mandelbrot set M
For c ∈ C: pc(z) := z2 + c

p◦0c (z) := z ,

p◦k+1
c (z) := pc(p◦kc (z))

M := {c ∈ C | p◦kc (0) 67→ ∞ for k 7→ ∞}

I M is the closure of its interior.

I M ⊆ {c ∈ C | |c | ≤ 2}.
I M = {c ∈ C | |p◦kc (0)| ≤ 2 for all k}
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Mandelbrot set and Julia sets

The Mandelbrot set “describes” the behaviour of all quadratic polynomials
with complex coefficients under iteration:

I Every quadratic polynomial with complex coefficients is affinely
conjugated to a uniquely determined polynomial of the form pc .

I The Julia set of pc :

Jc := Boundary({z ∈ C | p◦kc (z) 7→ ∞})

Known:
c ∈ M ⇒ Jc is connected
c 6∈ M ⇒ Jc is a Cantor set (hence, totally disconnected)



History of the Mandelbrot set

I 1978/1980: Brooks and Matelski: first pictures

I 1980: Mandelbrot: further pictures

I 1982: Douady and Hubbard: call the set M Mandelbrot set,
show that M is simply connected,
give a parametrization of the complement of M,
give parametrizations of the hyperbolic components of M,
. . .,

I Since then: many results by Branner, Douady, Hubbard, Lavaurs,
Lyubich, Mc Mullen, Milnor, Shishikura, Sullivan, Tan Lei, Yoccoz, and
many more.

I 1991/1998: Shishikura: shows that the Hausdorff dimension of the
boundary of M is equal to 2.



Is the Mandelbrot set computable?

Question posed by Penrose (1989, The Emperor’s New Mind)
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In what sense “computable”?



Computably enumerable open subsets of Rn

I An open set U ⊆ Rn is called c.e. open,
if one can effectively produce a list of
open rational (i.e., with rational
midpoint and rational radius) balls that
cover exactly U.

I An open set U ⊆ Rn is c.e. open iff one
can enumerate all closed rational balls
that are contained in U.
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I An open set U ⊆ Rn is c.e. open iff there is a Turing machine T such
that, for any x ∈ Rn and any sequence (q0, q1, q2 . . .) of rational
numbers qi with |qi − x | ≤ 2−i

x ∈ U ⇐⇒ On input (q0, q1, q2, . . .), T

stops after finitely many steps.



Computably enumerable closed subsets of Rn

I A closed set A ⊆ Rn is called c.e. closed
if one can effectively enumerate all open
rational balls B with B ∩ A 6= ∅.

I A closed set A ⊆ Rn is c.e. closed iff one
can compute a list of points dense in A.
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Computable subsets of Rn

Lemma:
For a closed subset A ⊆ Rn the follow-
ing are equivalent:

I The distance function dA of A is
computable.

I 1. A is c.e. closed and
2. Rn \ A ist c.e. open.

I One can draw a pixel image of
A, with any precision.
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Pixel image of A with precision 2−n:
Every pixel p of side length 2−n in a sufficiently large rectangle has a
correct color, where correct color means:

I black if d(midpoint(p),A) < 2−n,

I white if d(midpoint(p),A) > 2 · 2−n,

I black or white, otherwise.



Strongly computable subsets of Rn

Lemma:
For a closed subset A ⊆ Rn the follow-
ing are equivalent:

I The two-sided distance function
dtwo−sided,A of A is computable.

I 1. the interior of A is c.e. open,
2. the boundary of A is c.e.

closed, and
3. Rn \ A is c.e. open.
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Computable enumerability of various sets

Proposition (Weihrauch: “Computable Analysis”, 2000)

The complement C \M of the Mandelbrot set is c.e. open.

Proposition (H. 2005)

The boundary ∂M of the Mandelbrot set is c.e. closed.

Proposition (H. 2005)

The union H(M) of the hyperbolic components of the interior of the
Mandelbrot set is c.e. open.



The hyperbolic components of M

A point z0 ∈ C is a periodic point of a polynomial p if there is a k > 0 such
that p◦k(z0) = z0. Then, k is its period, and the k points z0 z1 = p(z0),
. . ., zk−1 = p◦k−1(z0) form a cycle. Then, (p◦k)′(z0) is the multiplier of the
cycle. A cycle is called attracting if |multiplier| < 1.

The set
H(M) := {c ∈ C | pc has an attract-
ing cycle}
is open and a subset of the interior of
M.
The connected components of H(M)
are called hyperbolic components.



Four conjectures about the Mandelbrot set
Conjecture 1: The Mandelbrot set M is locally connected.

⇓ [Douady, Hubbard 1982]

Conjecture 2: (Hyperbolicity conjecture) The union H(M) of the hyperbolic
components of the interior of the Mandelbrot set M is equal to the interior
of M.

⇓ (H. 2005)

Conjecture 3: The two-sided distance function dtwo−sided,M of M is
computable.

⇐⇒ Conjecture 3’: The interior of the Mandelbrot set is c.e. open.

⇓ (Clear)

Conjecture 4: The distance function dM of M is computable.

⇐⇒ Conjecture 4’: The Mandelbrot set is c.e. closed



Escape time

Let the escape time function e : N→ N be defined by

e(k) := min
{
m ∈ N : (∀c ∈ C)

(
dM(c) ≥ 2−k ⇒ |p◦mc (0)| ≥ 3

)}
.

Theorem (Carleson, Gamelin, 1993)

If e satisfies
∑∞

k=0 e(k) · 2−k <∞ then M is even locally connected.

Lemma (H. 2005)

The following are equivalent:

I The distance function dM of M is computable (Conjecture 4).

I There exists a computable function b : N→ N with
(∀k ∈ N) e(k) ≤ b(k).


