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Many questions in computability have been asked, and answered.
Some have remained open for a very long time but are worth
keeping in mind.

One of us may just have the right insight to answer them!
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keeping in mind.
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@ Sacks (1963): Which locally countable partial orders of size at
most 2%° can be embedded into the Turing degrees?
(Cf. Higuchi/P. Lutz on arxiv, using AD)
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@ Sacks (1963): Which locally countable partial orders of size at
most 2%° can be embedded into the Turing degrees?
(Cf. Higuchi/P. Lutz on arxiv, using AD)

o Lachlan? (late 1960’s): Which finite lattices can be embedded
into the c.e. Turing degrees? (Lerman 2000 gives M3-criterion
for join-semidistributive lattices)

@ Late 1960's (outgrowth of homogeneity problem):

Which natural degree structures have nontrivial
automorphisms? (Cf. Ershov/Palyutin 1975 for m-degrees,
Denisov 1978 for c.e. m-degrees, Slaman/Woodin 1990's for
Turing degrees and hyperarithmetic degrees,

Slaman/M. Soskova 2017-18 for enumeration degrees)
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@ Ershov (1977): For which finite families F; and F, of c.e. sets
are the Rogers semilattices R(F1) and R(F2) isomorphic?
The Rogers semilattice of F is the upper semilattice of all
uniformly computable enumerations { Ve }ec, modulo
computable equivalence.

Ershov (2003) showed that a necessary condition is
(F{,C) = (F},C) (where (F',C) is the partial order (F,C)
with the maximal elements of F removed).
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with the maximal elements of F removed).

@ An. Muchnik, Seménov, Uspensky (1998): Do Martin-L6f
randomness and Kolmogorov-Loveland randomness coincide?
(Kolmogorov-Loveland randomness is defined in terms of
computable, non-monotonic, adaptive martingales.

Cf. Kastermans/Lempp 2010 separating Martin-L6f and
injective randomness)
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Ideas for answering them are welcome!
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