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Overall Theme

Anything which can happen in computability theory happens
somewhere in the study of the c.e. sets and degrees. Perhaps
really just fun with effective constructions.
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The Collapse of an REA hierarchy

On work with Peter Hinman (1994), work with Peter Gerdes
(not available yet), and work of Peter Gerdes (2020) plus a new

question from Gerdes.
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Fun with Peter2

A is 1-Recursively Enumerable and Above in X (1-REA in X) iff
A = X⊕WX

e , for some e. WX
e itself not need compute X.

A is (n + 1)-REA in X iff A is 1-REA in Y and Y is n-REA in X.

A is n-REA iff it is n-REA in ∅. A set A has n-REA degree iff it
is Turing equivalent to a n-REA set.

A 1-REA set is properly 1-REA iff it is not computable. A
(n + 1)-REA set is properly (n + 1)-REA iff it is does not have
n-REA degree.
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1-REA Sets
A = A[1] = We1 , for some e1. What enters stays.
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2-REA Sets
A = A[1] tA[2] and A[2] = WA[1]

e2
, for some e2. Axioms cannot be reused.
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3-REA Sets
A = A[1] tA[2] tA[3] and A[3] = WA[≤2]

e3
, for some e3.
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The Results

Theorem (Soare and Stob 1982)
Every properly 1-REA set A can be nonuniformly extended to a
properly (1 + 1)-REA set A⊕WA

e .

Theorem (Cholak and Hinman 1994)
Let m be a positive integer. Every properly 1-REA set A can be
nonuniformly extended to a properly (1 + m)-REA set. Every
properly 2-REA set A can be nonuniformly extended to a properly
(2 + m)-REA set.

Theorem (Cholak and Gerdes)
There is a properly 3-REA set A which cannot be extended to a
properly (3 + 1)-REA set.
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The Extendability Results

The fact the extension must be nonuniform uses Jockusch and
Shore’s Hop Inversion (published in 1985) and the Recursion
Theorem.

Given A properly 2-REA and let m = 1. Build two sets UA
e0

and
UA

e1
such that, for all 2-REA sets Xe, we meet the following for

all j, e, j′ and e′:

Rj,e,j′,e′ : Φj(A⊕UA
e0
) 6= Xe or Φj(Xe) 6= A⊕UA

e0
, or

Φj′(A⊕UA
e1
) 6= Xe′ or Φj′(Xe′) 6= A⊕UA

e1
.

Uses the true stages approximation and finite injury.
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The Requirements for the Nonextendability Result

Build 3-REA sets A and Yi and Turing Functionals Γi and Θ
such that, for all 2-REA sets Xe, we meet the following for all
i, j, e:

Pi: Γi(A⊕WA
i ) = Yi and Θ(Yi) = WA

i .
Rj,e: Φj(A) 6= Xe or Φj(Xe) 6= A.

Again uses the true stages approximation and finite injury.



First Vignette: An interest 3-REA degree Results Proof Ideas Flash: the ω-REA sets 2nd Vignette: Low2 r.e. sets

ω-REA sets
A[i] = WA[<i]

f (i) , where f is computable.

If there is a least i such that A[i] is not computable then A
computes a non computable Σ0

1 set. Otherwise A is computable
in 0′′ as the union of computable sets.

Theorem (Gerdes)
There is a ω-REA set A such that A and 0′ form a mininal pair.

Question (Gerdes)
Is there a ω-REA set A where all A[i] are low2 but A computes 0′′′?
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Low2

Theorem (Cholak, Downey, Greenberg 2022)
If A is low2 then L(A) and E are isomorphic.

The issue is access to elements of A.
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Domination

Definition
Given two functions g and r from the nationals to the nationals,
g dominates r iff, there is a k, for all l ≥ k, g(l) ≥ r(l).

Theorem (Martin)
H is high iff H′ ≡T 0′′ iff there is a function g of Turing degree H
which dominates all computable functions.

Corollary
A is low2 iff A′′ ≡T 0′′ iff 0′ is high over A ((0′)′ ≡T A′′) iff there is
function g of Turing degree 0′ which dominates all A-computable
functions.
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Low2 Access
Uniformly stagewise construct sets Fi, such that, for all i, Fi ∩A
is nonempty. If Fi,s ∩As is empty add every ball outside A
which is below some large ball into Fe.

Stagewise define hAs
s (e) as the maximum element of Fi,s ∩As

with same use.

We will ek-certify the balls in Fe at stage s + 1 if gs+1(e) ≥ hAs
s (e),

where it could be that g dominates h from k onward at stage s.

Since A is low2, for some least k, for almost all e, the balls inside
Fe will be ek-certified. By the use of largeness, some of these balls
will be freshly ek-certified at the final certification stage for Fe.

For each possible k, consider the ek-certified balls as elements of
A and use them accordingly to construct what is needed but
one such object for each possible k. The k makes this harder to
iterate.
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Time for a diagram?
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