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Basic Definitions

Numbering of a countable set ( is a surjective mapping
� : ℕ→ (.

Let �(() be the set of all numberings of (.

Definition
A numbering � of a countable family S⊆ 2ℕ is computable
(�-computable), if the set �� = {〈G, H〉 : H ∈ �(G)} is c.e.
(�-c.e.). In this case, the family S is said to be also computable
(�-computable).

If � = ∅(=), then �-computable numberings are called
Σ0
=+1-computable.

Let Com�(S) = {� ∈ �(S) : � is �-computable},
Com0

=+2(S) = Com∅(=+1)(S), Com(S) = Com∅(S).
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History

Program of A.N. Kolmogorov to study numbered sets as a
research subject started at 1954: V.A. Uspensky
(1955-1957,1969), H. Rogers (1958), A.I. Maltsev (1961-1965),
Yu.L. Ershov (since 1967), S.A. Badaev (since 1974),
S.S. Goncharov (since 1980) . . .

Computable numberings in well-known hierarchies (arithmetic
and analytical hierarchy, the Ershov hierarchy) began to be
studied by S.S. Goncharov, A. Sorbi, S.A. Badaev,
S.Yu. Podzorov, S. Lempp and others since 1997.

The first paper completely devoted to the study of
�-computable numberings is the paper by S.A. Badaev and
S.S. Goncharov: «Generalized computable universal
numberings», Algebra and Logic, 53:5 (2014), 355–364.
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Part I. Rogers Semilattices of
�-computable Families



Basic Definitions

Let �0 , �1 ∈ �(().
Definition
We say that �0 is reducible to �1 (�0 6 �1) if �0 = �1 ◦ 5 for
some computable function 5 . Numberings �0 and �1 are
called equivalent (�0 ≡ �1) if �0 6 �1 and �1 6 �0.

Let (�0 ⊕ �1)(2G + 8) = �8(G), 8 = 0, 1.

Let S is an �-computable family. The quotient structure
L�(S) = 〈Com�(S)/≡;6〉 is said to be the Rogers semilattice of
the family S.

Let L0
=+2(S) = L∅

(=+1)(S), L(S) = L∅(S).
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Cardinality and Latticeness of L(S)

Questions (Ershov, 1967)
1. What can we say about the cardinalities of the Rogers

semilattices?
2. When are they lattices?

Theorem (Khutoretskii, 1971)
If |L(S)| > 1, then L(S) is infinite.

Theorem (Selivanov, 1976)
If |L(S)| > 1, then L(S) is not a lattice.

Remark
There are computable families Ssuch that |S| > 1 and
|L(S)| = 1.
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Cardinality and Latticeness of L0
=+2(S)

Theorem (Goncharov, Sorbi, 1997)
Let Sbe an infinite Σ0

=+2-computable family. Then L0
=+2(S)

contains an infinite subset such that any two different
elements of the subset form a minimal pair.

Theorem (Goncharov, Sorbi, 1997)
Let Sbe a finite family of Σ0

=+2-sets such that |S| > 1. Then
L0
=+2(S) contains an ideal that is isomorphic to the upper

semilattice of c.e. <-degrees L0.

Corollary (Goncharov, Sorbi, 1997; Ershov, 1969)
Let Sbe a Σ0

=+2-computable family such that |S| > 1. Then
L0
=+2(S) is infinite and is not a lattice.
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Cardinality and Latticeness of L�(S)

Let ∅ <) �.
Theorem
Let Sbe an infinite �-computable family. Then L�(S)
contains an infinite subset such that any two different
elements of the subset form a minimal pair.

Theorem
1. Let Sbe a finite family of �-c.e. sets such that |S| > 1. Then

L�(S) contains an ideal that is isomorphic to the following
ideal of the upper semilattice of <-degrees:
�<
)
(�) = {deg<(-) : - 6) �}.

2. The ideal �<
)
(�) is not a lattice.
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Cardinality and Latticeness of L�(S)

Let ∅ <) �.
Theorem (Jockush, 1969)
The ideal �<

)
(�) = {deg<(-) : - 6) �} is infinite.

Corollary
Let Sbe an �-computable family such that |S| > 1. Then
L�(S) is infinite and is not a lattice.
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Distinguishing L from L�

Let R0 = {L(S) : S is computable}, Th(R0) =
⋂
A∈R0

Th(A),

R1 =
⋃
∅<)�
{L�(S) : S is �-computable}, Th(R1) =

⋂
A∈R1

Th(A).

Is there a difference between Th(R0) and Th(R1)?
Definition
An upper semilattice 〈!;∨, 6〉 is (weakly) distributive if for
every 00 , 01 , 1 ∈ !, if 1 6 00 ∨ 01 (and 1 
 00, 1 
 01), then
there exist 10 , 11 ∈ ! such that 10 6 00, 11 6 01 and 1 = 10 ∨ 11.

Proposition (Folklore)
If S is a finite family of �-c.e. sets, then L�(S) is distributive.
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Distinguishing L from L�

Theorem (Badaev, Goncharov, Sorbi, 2003)
If S is an infinite Σ0

=+2-computable family, then L0
=+2(S) is not

weakly distributive.

Theorem
If S is an infinite �-computable family, where ∅ <) �, then
L�(S) is not weakly distributive.

Theorem
There is a computable family Ssuch that L(S) is weakly
distributive but not distributive.

Corollary
Th(R0) ≠ Th(R1).
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Universal �-computable Numberings

Definition
A numbering � ∈ Com�(S) is universal if 
 6 � for each

 ∈ Com�(S).

Theorem (Lachlan, 1964)
Any finite family of c.e. sets has a universal computable
numbering.

Theorem (Badaev, Goncharov, 2014)
Let ∅′ 6) �. Let Sbe a finite family of �-c.e. sets. Then Shas
a universal �-computable numbering iff

⋂
S ∈ S.

Question (Badaev, Goncharov, 2014)
What happens if we replace the set ∅′ 6) � by ∅ <) � <) ∅′ or
� |) ∅′?
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Universal �-computable Numberings

If ∅ <) � 6) ∅′ or ∅′ 6) �, then deg)(�) is hyperimmune.

Theorem
For a set A the following conditions are equivalent.
1. deg)(�) is hyperimmune;
2. Let Sbe a finite family of �-c.e. sets. Then Shas a universal
�-computable numbering iff

⋂
S ∈ S.

3. There is a finite family of �-c.e. sets without universal
�-computable numberings.

Corollary
Let deg)(�) is hyperimmune-free. Then any finite family of
�-c.e. sets has a universal �-computable numbering.
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Limitness of the Greatest Element of L�(S)

Theorem (Khutoretskii, 1971)
Let 2 be the greatest element of L(S). Then 2 is limitness, that
is ∀0 ∈ L(S)∃1 ∈ L(S) [0 < 2 ⇒ 0 < 1 < 2].

Theorem (Podzorov, 2004)
Let 2 be the greatest element of L0

=+2(S). Then 2 is limitness if
one of the following conditions is met.
1.

⋂
S ∈ S;

2. S is finite;
3. S is Σ0

=+1-computable.
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Limitness of the Greatest Element of L�(S)
Question (Podzorov, 2004)
Let 2 be the greatest element of L0

=+2(S). Is 2 limitness?

Proposition (Selivanov, 1982; Badaev, Goncharov, 2014)
Let ∅′ 6) �. Then any universal �-computable numbering is
complete and, therefore, non-splittable.

Theorem
Let ∅′ 6) �. Let � ∈ Com�(S) is non-splittable. Then for any
0 ∈ L�(S)with 0 < 2 = [�] there is a 1 ∈ L�(S) such that
0 < 1 and 2 
 1.

Corollary
The greatest elements of the semilattices L0

=+2(R), if they
exist, are limitness.
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Minimal �-computable Numberings

Definition
A numbering � ∈ �(() is minimal if 
 6 �⇒ � 6 
 for each

 ∈ �(().

Theorem (Badaev, Goncharov, 2001)
Any infinite Σ0

=+2-computable family has infinitely many
Σ0
=+2-computable minimal numberings.

Definition (S. Goncharov, A. Yakhnis, V. Yakhnis, 1993)
A class C ⊆ �(S) is �-effectively infinite if there is a p.c.
function # such that
{
�

!4 (G) : !4(G) ↓} ⊆ C⇒ ∀G ∈ dom!4 [C 3 
�#(4) . 
�
!4 (G)],

for each 4, where 
�= is the �-computable numbering with the
Gödel number =.
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Distribution of Minimal �-computable Numberings
Questions (Badaev, Goncharov, 2001)
Let Sbe an infinite Σ0

=+2-computable family.

1. Is the class  <8=(S) = {� ∈ �(S) : � is minimal}
∅(=+1)-effectively infinite?

2. Does L0
=+2(S) contain an ideal without minimal elements?

Theorem
Let � be a high set (∅′′ 6) �′). Then for any infinite
�-computable family Swe have
�
′′′ 61 Min�(S) = {4 : 
�4 ∈  <8=(S)}.

Corollary
Let � be a high set (in particular, � = ∅(=+1)) and San infinite
�-computable family. Then  <8=(S) is �-effectively infinite.
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Ideals Without Minimal Elements

Theorem (Badaev, Goncharov, 2001)
If a family Shas an single-valued Σ0

=+2-computable
numbering, then L0

=+2(S) contains an ideal without minimal
elements.

Theorem (Podzorov, 2003)
If a Σ0

=+2-computable family S is infinite, then L0
=+2(S)

contains an ideal without minimal elements.

Theorem
Let deg)(�) be a hyperimmune degree and San infinite
�-computable family. Then L�(S) contains an ideal without
minimal elements.
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Ideals Without Minimal Elements

Let 6a be the reducibility of numberings by a-computable
functions, and ≡a the corresponding equivalence.

Theorem (Podzorov, 2003)
Let* 6) ∅(<) be an immune set, where 1 6 < 6 = + 1. Then
for every 
 ∈ Com0

=+2(S) there are �0 , �1 ∈ Com0
=+2(S) such

that �0 ≡0(<+1)

, �1 ≡0′′ 
 and

1. 〈[̂�0];6〉 � 〈�deg<(*);6〉 if S is finite;

2. 〈[̂�0];6〉 � 〈�deg<(*) \ {0};6〉 if S is infinite;

3. 〈[̂�1];6〉 � 〈E∗;⊆∗〉 if S is finite;

4. 〈[̂�1];6〉 � 〈E∗ \ {0};⊆∗〉 if S is infinite.
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Part II. Upper Semilattice of
�-computable Families



The Upper Semilattice Ω�

Let Ω� = {S⊆ 2ℕ : S is �-computable}. Then 〈Ω�;⊆〉 is an
upper semilattice with the greatest element E� and the least
element ∅.

The families S0 = {{2G} : G ∉ �′} ∩ {ℕ} and
S1 = {{2G} : G ∉ �′} ∩ {2ℕ} have no infimum in Ω�. Therefore,
Ω� is not a lattice.

Degtev, A.N. The semilattice of computable families of
recursively enumerable sets. Mathematical Notes of the
Academy of Sciences of the USSR 50, 1027–1030 (1991).
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Minuends

Definition
A family A ∈ Ω� is a minuend if A\B ∈ Ω� for any B ∈ Ω�.
Let Ω�

"
be the class of all minuends.

Remark (definability of Ω�
"
)

A ∈ Ω�
"

iff ∀B ∈ Ω�∃C ∈ Ω� [C ⊆ A& A∪B= C∪B&
∀D ∈ Ω� [D ⊆ C& D ⊆ B⇒ D= ∅]].

Theorem (Degtev, 1991)
Ω�
"

is an ideal of Ω� that forms a lattice.

Theorem
Ω�
"
= Fin� = {F∈ Ω� : F is finite}. Therefore, Fin� is

definable in Ω�.
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Minuends

Definition
A numbering � is precomplete if for every p.c. function #

there exists a computable function 5 such that for every =
#(=) ↓⇒ �#(=) = � 5 (=).

Theorem (Ershov, 1977)
A numbering � is precomplete iff there is a computable
function fix such that for every =
!=(fix(=)) ↓⇒ �!=(fix(=)) = �fix(=).

Definition
A numbering � is positive if the set {〈G, H〉 : �(G) = �(H)} is c.e.
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Minuends

Theorem
Let Sbe a computable family such that |S| > 1. If Shas a
precomplete, positive, universal computable numbering, then
there is an infinite computable family A⊆ Ssuch that

1. A\B is finite for each infinite computable family B ⊆ A;
2. A\B ∈ Ω for each finite family of c.e. sets B.
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Subtrahends

Definition
A family A ∈ Ω� is a subtrahend if B\A ∈ Ω� for any
B ∈ Ω�. Let Ω�

(
be the class of all subtrahends.

Remark
Ω�
(
is also definable in Ω�.

Theorem (Degtev, 1991)
Let A ∈ Fin�. Then A ∈ Ω�

(
iff any set � ∈ A is finite.
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Subtrahends

Corollary
�� = {A ∈ Ω� : ∀� ∈ A[� is finite]} is definable in Ω�.

Indeed, A ∈ �� iff ∀C ∈ Fin� [C ⊆ A⇒ C ∈ Ω�
(
].

Corollary
The singleton F= {� ⊆ ℕ : � is finite} is definable in Ω�.

Indeed, A= F iff A ∈ �� &∀C ∈ �� [C ⊆ A].
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Weak Minuends

Definition
A family A ∈ Ω is a weak minuend if A∩B ∈ Ω for any
B ∈ Ω. Let Ω," be the class of all weak minuends.

Remark
Ω" = Fin ⊆ Ω," .

Definition
A family A ∈ Ω is called a completely c.e. if the index set of A
is c.e. By Rice-Shapiro Theorem, A≠ ∅ is completely c.e. iff
A= {- : � 5 (G) ⊆ -, G ∈ ℕ} for some computable function 5 .

Proposition (Degtev, 1991)
If A is completely c.e., then A ∈ Ω," .
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Weak Minuends

Question
How can we describe the weak minuends?

Question
Is there a family A ∈ Ω," such that A≠∗ B for any
completely c.e. family B?
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Thank you for attention!


