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A4 B = {n : A(n) 6= B(n)}.

δ(A,B) = ρ(A4 B) = lim supn
|(A4B)∩[0,n)|

n
.

A and B are coarsely equivalent if δ(A,B) = 0.

Let S be the set of coarse equivalence classes.

(S, δ) is a metric space.

Thm (Blanchard, Formenti, and Kůrka). (S, δ) is not compact,
but it is complete and path-connected.

Thm. (S, δ) is contractible and geodesic.

The completeness of (S, δ) is equivalent over RCA0 to the principle
DOM, studied by Hölzl, Jain, Raghavan, Stephan, and Zhang.
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Let [A] be the coarse equivalence class of A.

For U ⊆ 2ω, let [U ] = {[A] : A ∈ U}.

Thm. If U is closed under Turing equivalence then TFAE:

1. [U ] is connected.

2. [U ] is path-connected.

3. [U ] is contractible.

4. [U ] is geodesic.

5. For every X ∈ 2ω and A ∈ U , there is a B ∈ U such that
A 6T B and X 6T B ′.

An example is U = {Y : C 
T Y } for a noncomputable C .
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For [A] ∈ S and B ⊆ S , let δ([A],B) = inf{δ([A], [B]) : [B] ∈ B}.

The Hausdorff distance between A,B ⊆ S is
H(A,B) = max

(
sup{δ([A],B) : [A] ∈ A}, sup{δ([B],A) : [B] ∈ B}

)
.

Since δ is bounded, H is a metric on the closed subsets of (S, δ).

Let a,b be Turing degrees.

Let H(a,b) be the distance between the closures of [a] and [b].

Let D be the set of Turing degrees.

Thm. H(a,b) = 0 iff a = b, so (D,H) is a metric space.

We can understand this space better via the relativized form of the
coarse computability bound.
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γ(A) = sup{r : (∃ computable C )[δ(A,C ) 6 1− r ]}.

Γ(a) = inf{γ(A) : A ∈ a} = inf{γ(A) : A 6T a}.

Γ(a) = 1 iff a = 0.

Thm (Hirschfeldt, Jockusch, McNicholl, and Schupp). If a is
weakly 1-generic then Γ(a) = 0.

Thm (Andrews, Cai, Diamondstone, Jockusch, and Lempp).
If a is 1-random and hyperimmune-free then Γ(a) = 1

2
.

Thm (Monin). The only values of Γ(a) are 0, 1
2
, and 1.

γ(A) and Γ(a) can be relativized to γd(A) and Γd(a).

Thm (after Monin). The only values of Γd(a) are 0, 1
2
, and 1.
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Thm. H(a,b) = 1−min
(
Γa(b), Γb(a)

)
.

Cor. (D,H) is a (0, 1
2
, 1)-valued metric space.

If b is weakly 1-generic relative to a then H(a,b) = 1.

If a and b are relatively 1-random then H(a,b) = 1
2
.

Let a.e. ≡ “for almost every” and c.m. ≡ “for comeager many”.

(∀a)(c.m. b)[H(a,b) = 1].

(a.e. a)(a.e. b)[H(a,b) = 1
2
].

a is attractive if (a.e. b)[H(a,b) = 1
2
], and dispersive otherwise.

For example, 1-randoms are attractive, by van Lambalgen’s Theorem.
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Thm. There is a high c.e. a s.t. almost every set computes a set
that is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If a is c.e. and low, then almost every set computes a set that
is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If a is weakly 2-generic and b is 2-random then b computes a
set that is weakly 1-generic relative to a, and hence H(a,b) = 1.

Cor. If a is weakly 2-generic then it is dispersive.

Cor. (c.m. a)(a.e. b)[H(a,b) = 1].

The last theorem cannot be improved to weak 2-randomness, but we
do know whether it can be improved to 1-genericity.

Open Question. Is every 1-generic degree dispersive?



Thm. There is a high c.e. a s.t. almost every set computes a set
that is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If a is c.e. and low, then almost every set computes a set that
is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If a is weakly 2-generic and b is 2-random then b computes a
set that is weakly 1-generic relative to a, and hence H(a,b) = 1.

Cor. If a is weakly 2-generic then it is dispersive.

Cor. (c.m. a)(a.e. b)[H(a,b) = 1].

The last theorem cannot be improved to weak 2-randomness, but we
do know whether it can be improved to 1-genericity.

Open Question. Is every 1-generic degree dispersive?



Thm. There is a high c.e. a s.t. almost every set computes a set
that is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If a is c.e. and low, then almost every set computes a set that
is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If a is weakly 2-generic and b is 2-random then b computes a
set that is weakly 1-generic relative to a, and hence H(a,b) = 1.

Cor. If a is weakly 2-generic then it is dispersive.

Cor. (c.m. a)(a.e. b)[H(a,b) = 1].

The last theorem cannot be improved to weak 2-randomness, but we
do know whether it can be improved to 1-genericity.

Open Question. Is every 1-generic degree dispersive?



Thm. There is a high c.e. a s.t. almost every set computes a set
that is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If a is c.e. and low, then almost every set computes a set that
is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If a is weakly 2-generic and b is 2-random then b computes a
set that is weakly 1-generic relative to a, and hence H(a,b) = 1.

Cor. If a is weakly 2-generic then it is dispersive.

Cor. (c.m. a)(a.e. b)[H(a,b) = 1].

The last theorem cannot be improved to weak 2-randomness, but we
do know whether it can be improved to 1-genericity.

Open Question. Is every 1-generic degree dispersive?



Let M be a (0, 1
2
, 1)-valued metric space.

Let GM be the graph with vertices the points in M, and an edge
between x and y iff their distance is 1.

A graph (V ,E ) is a comparability graph if there is a partial order
(V ,≺) s.t. E (x , y) iff x ≺ y or y ≺ x .

Thm. If M is countable and GM is a comparability graph, then M
is isometrically embeddable in (D,H).

We do not know what other countable (0, 1
2
, 1)-valued metric spaces

(if any) are isometrically embeddable in (D,H).

Let M be s.t. GM is a cycle of length 5.

Open Question. Is M isometrically embeddable in (D,H)?
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Thm. (S, δ) is geodesic.

Indeed, there are continuum many
geodesics between any two distinct points.

In the proof, it is useful to have a family of size continuum of sets of
density 1

2
that are pairwise not coarsely equivalent, where A has

density 1
2

if limn
|A∩[0,n)|

n
= 1

2
.

A perfect tree is a T : 2<ω → 2<ω s.t. T (σ0) and T (σ1) are
incompatible extensions of T (σ).

P is a path on T if P =
⋃
σ≺A T (σ) for some A ∈ 2ω. Note that

P ⊕ T ≡T A⊕ T .

Thm. There is a computable perfect tree such that each path has
density 1

2
, as does the symmetric difference of any two distinct paths.

A related question: Is there a perfect tree of pairwise relatively
1-random sets?
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Thm. If U is closed under Turing equivalence then TFAE:

1. [U ] is connected.

2. [U ] is path-connected.

3. [U ] is contractible.

4. [U ] is geodesic.

5. For every X ∈ 2ω and A ∈ U , there is a B ∈ U such that
A 6T B and X 6T B ′.

An example is U = {Y : C 
T Y } for a noncomputable C .

If U is a Turing ideal, then 5 becomes: for every X there is a B ∈ U
s.t. X 6T B ′, i.e., U is jump cofinal.

How do we obtain ideals that are jump-cofinal but not cofinal?
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Thm. There is a ∅′-computable perfect tree T s.t. ∅′ is not
computable from any finite join of paths on T .

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a ∅′-computable perfect tree
such that every join of finitely many distinct paths is 1-generic.

Can we do the same using 1-randomness?

Let (A)n be the set of ordered n-tuples of distinct elements of A.

Thm (Mycielski). Let (Ri ⊆ (2ω)ni )i∈ω be s.t. each Ri has measure
1. There is a nonempty perfect C ⊆ 2ω s.t. (C)ni ⊆ Ri for all i .

Miller and Yu gave a direct construction of a perfect tree such that
every join of finitely many distinct paths is 1-random, and showed
how its relativized version yields a proof of Mycielski’s Theorem.



Thm. There is a ∅′-computable perfect tree T s.t. ∅′ is not
computable from any finite join of paths on T .

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a ∅′-computable perfect tree
such that every join of finitely many distinct paths is 1-generic.

Can we do the same using 1-randomness?

Let (A)n be the set of ordered n-tuples of distinct elements of A.

Thm (Mycielski). Let (Ri ⊆ (2ω)ni )i∈ω be s.t. each Ri has measure
1. There is a nonempty perfect C ⊆ 2ω s.t. (C)ni ⊆ Ri for all i .

Miller and Yu gave a direct construction of a perfect tree such that
every join of finitely many distinct paths is 1-random, and showed
how its relativized version yields a proof of Mycielski’s Theorem.



Thm. There is a ∅′-computable perfect tree T s.t. ∅′ is not
computable from any finite join of paths on T .

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a ∅′-computable perfect tree
such that every join of finitely many distinct paths is 1-generic.

Can we do the same using 1-randomness?

Let (A)n be the set of ordered n-tuples of distinct elements of A.

Thm (Mycielski). Let (Ri ⊆ (2ω)ni )i∈ω be s.t. each Ri has measure
1. There is a nonempty perfect C ⊆ 2ω s.t. (C)ni ⊆ Ri for all i .

Miller and Yu gave a direct construction of a perfect tree such that
every join of finitely many distinct paths is 1-random, and showed
how its relativized version yields a proof of Mycielski’s Theorem.



Thm. There is a ∅′-computable perfect tree T s.t. ∅′ is not
computable from any finite join of paths on T .

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a ∅′-computable perfect tree
such that every join of finitely many distinct paths is 1-generic.

Can we do the same using 1-randomness?

Let (A)n be the set of ordered n-tuples of distinct elements of A.

Thm (Mycielski). Let (Ri ⊆ (2ω)ni )i∈ω be s.t. each Ri has measure
1. There is a nonempty perfect C ⊆ 2ω s.t. (C)ni ⊆ Ri for all i .

Miller and Yu gave a direct construction of a perfect tree such that
every join of finitely many distinct paths is 1-random, and showed
how its relativized version yields a proof of Mycielski’s Theorem.



Thm. There is a ∅′-computable perfect tree T s.t. ∅′ is not
computable from any finite join of paths on T .

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a ∅′-computable perfect tree
such that every join of finitely many distinct paths is 1-generic.

Can we do the same using 1-randomness?

Let (A)n be the set of ordered n-tuples of distinct elements of A.

Thm (Mycielski). Let (Ri ⊆ (2ω)ni )i∈ω be s.t. each Ri has measure
1. There is a nonempty perfect C ⊆ 2ω s.t. (C)ni ⊆ Ri for all i .

Miller and Yu gave a direct construction of a perfect tree such that
every join of finitely many distinct paths is 1-random, and showed
how its relativized version yields a proof of Mycielski’s Theorem.



Thm. There is a ∅′-computable perfect tree such that every join of
finitely many distinct paths is 1-random.

This construction allows us to state a version of Mycielski’s Theorem
that is provable in ACA0.

If a set is sufficiently generic, then it computes a perfect tree such
that every join of finitely many distinct paths is 1-generic.

Thm. If a degree has a strong minimal cover then it does not
compute any perfect tree all of whose paths are 1-random.

Thm (Barmpalias and Lewis). Every 2-random degree has a
strong minimal cover.

Cor. No 2-random computes a perfect tree all of whose paths are
1-random.
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