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A and B are coarsely equivalent if (A, B) = 0.
Let S be the set of coarse equivalence classes.

(S,9) is a metric space.

Thm (Blanchard, Formenti, and Kirka). (S, J) is not compact,
but it is complete and path-connected.

Thm. (S, 0) is contractible and geodesic.

The completeness of (S, ¢) is equivalent over RCA, to the principle
DOM, studied by Holzl, Jain, Raghavan, Stephan, and Zhang.
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Let [A] be the coarse equivalence class of A.
For U/ C 2¢, let [U] = {[A] : A U}.
Thm. If U is closed under Turing equivalence then TFAE:

1. [U] is connected.

N

. [U] is path-connected.

w

. [U] is contractible.
4. [U] is geodesic.

5. For every X € 2 and A € U, there is a B € U such that
A< Band X <, B.

An example is U = {Y : C €1 Y} for a noncomputable C.



For [A] € S and B C S, let §([A], B) = inf{d([A],[B]) : [B] € B}.

The Hausdorff distance between A, B C S is
H(A, B) = max(sup{d([A], B) : [A] € A},sup{6([B], A) : [B] € B}).

Since § is bounded, H is a metric on the closed subsets of (S, J).



For [A] € S and B C S, let §([A], B) = inf{d([A],[B]) : [B] € B}.

The Hausdorff distance between A, B C S is
H(A, B) = max(sup{d([A], B) : [A] € A},sup{6([B], A) : [B] € B}).

Since § is bounded, H is a metric on the closed subsets of (S, J).
Let a,b be Turing degrees.

Let H(a,b) be the distance between the closures of [a] and [b].



For [A] € S and B C S, let §([A], B) = inf{d([A],[B]) : [B] € B}.

The Hausdorff distance between A, B C S is
H(A, B) = max(sup{d([A], B) : [A] € A},sup{6([B], A) : [B] € B}).

Since § is bounded, H is a metric on the closed subsets of (S, J).
Let a,b be Turing degrees.

Let H(a,b) be the distance between the closures of [a] and [b].
Let D be the set of Turing degrees.

Thm. H(a,b) =0 iff a=b, so (D, H) is a metric space.



For [A] € S and B C S, let §([A], B) = inf{d([A],[B]) : [B] € B}.

The Hausdorff distance between A, B C S is
H(A, B) = max(sup{d([A], B) : [A] € A},sup{6([B], A) : [B] € B}).

Since § is bounded, H is a metric on the closed subsets of (S, J).
Let a,b be Turing degrees.

Let H(a,b) be the distance between the closures of [a] and [b].
Let D be the set of Turing degrees.

Thm. H(a,b) =0 iff a=b, so (D, H) is a metric space.

We can understand this space better via the relativized form of the
coarse computability bound.
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v(A) = sup{r : (3 computable C)[§(A, C) < 1—r]}.
M(@) =inf{y(A) : A€ a} =inf{y(A): A< a}.
Ma)=1iffa=0.

Thm (Hirschfeldt, Jockusch, McNicholl, and Schupp). If a is
weakly 1-generic then I'(a) = 0.

Thm (Andrews, Cai, Diamondstone, Jockusch, and Lempp).

If a is 1-random and hyperimmune-free then I'(a) = 1.

Thm (Monin). The only values of ['(a) are 0, 1, and 1.
v(A) and ['(a) can be relativized to v4(A) and 4(a).

Thm (after Monin). The only values of q(a) are 0, 3, and 1.
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Thm. H(a,b) = 1 — min(Fa(b), [p(a)).

Cor. (D, H) is a (0, 1, 1)-valued metric space.

If b is weakly 1-generic relative to a then H(a,b) = 1.
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If a and b are relatively 1-random then H(a,b) = 3.

Let a.e. = “for almost every” and c.m. = “for comeager many".
(Va)(c.m.b)[H(a,b) = 1].

(a.e.a)(a.e.b)[H(a,b) = 1].

a is attractive if (a.e.b)[H(a,b) = 1], and dispersive otherwise.

For example, 1-randoms are attractive, by van Lambalgen's Theorem.
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Thm. There is a high c.e. a s.t. almost every set computes a set
that is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If ais c.e. and low, then almost every set computes a set that
is weakly 1-generic relative to a, and hence a is dispersive.

Thm. If a is weakly 2-generic and b is 2-random then b computes a
set that is weakly 1-generic relative to a, and hence H(a,b) = 1.

Cor. If a is weakly 2-generic then it is dispersive.
Cor. (c.m.a)(a.e.b)[H(a,b) = 1].

The last theorem cannot be improved to weak 2-randomness, but we
do know whether it can be improved to 1-genericity.

Open Question. Is every 1-generic degree dispersive?
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Let M be a (0, 3, 1)-valued metric space.

Let Gy be the graph with vertices the points in M, and an edge
between x and y iff their distance is 1.

A graph (V, E) is a comparability graph if there is a partial order
(V,<) st E(x,y)iff x <y ory < x.

Thm. If M is countable and Gy, is a comparability graph, then M
is isometrically embeddable in (D, H).

We do not know what other countable (0, %, 1)-valued metric spaces
(if any) are isometrically embeddable in (D, H).

Let M be s.t. Gy, is a cycle of length 5.

Open Question. Is M isometrically embeddable in (D, H)?
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Thm. (S, 0) is geodesic. Indeed, there are continuum many
geodesics between any two distinct points.

In the proof, it is useful to have a family of size continuum of sets of

density % that are pairwise not coarsely equivalent, where A has
[An0n)| _ 1
n

density % if lim,, o

A perfect treeisa T : 2<% — 2<% s.t. T(00) and T(ol) are
incompatible extensions of T (o).

Pisa pathon T if P ={]J,_, T(o) for some A € 2“. Note that
PeT=AaT.

Thm. There is a computable perfect tree such that each path has
density % as does the symmetric difference of any two distinct paths.

A related question: Is there a perfect tree of pairwise relatively
1-random sets?
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Thm. If U is closed under Turing equivalence then TFAE:

1. [U] is connected.

N

. [U] is path-connected.

w

. [U] is contractible.

S

. [U] is geodesic.

1

. For every X € 2¥ and A € U, there is a B € U such that
A<, Band X <, B’

An example is Y = {Y : C &1 Y} for a noncomputable C.

If U is a Turing ideal, then 5 becomes: for every X thereisa B € U
st. X <1 B, i.e., U is jump cofinal.

How do we obtain ideals that are jump-cofinal but not cofinal?
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Thm. There is a (-computable perfect tree T s.t. (' is not
computable from any finite join of paths on T.

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a (/~computable perfect tree
such that every join of finitely many distinct paths is 1-generic.

Can we do the same using 1-randomness?
Let (A)” be the set of ordered n-tuples of distinct elements of A.

Thm (Mycielski). Let (R; C (2“)");c, be s.t. each R; has measure
1. There is a nonempty perfect C C 2¢ s.t. (C)" C R; for all i.

Miller and Yu gave a direct construction of a perfect tree such that
every join of finitely many distinct paths is 1-random, and showed
how its relativized version yields a proof of Mycielski's Theorem.
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Thm. There is a ('-computable perfect tree such that every join of
finitely many distinct paths is 1-random.

This construction allows us to state a version of Mycielski's Theorem
that is provable in ACA,.

If a set is sufficiently generic, then it computes a perfect tree such
that every join of finitely many distinct paths is 1-generic.

Thm. If a degree has a strong minimal cover then it does not
compute any perfect tree all of whose paths are 1-random.

Thm (Barmpalias and Lewis). Every 2-random degree has a
strong minimal cover.

Cor. No 2-random computes a perfect tree all of whose paths are
1-random.



