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Università di Udine, Italy

alberto.marcone@uniud.it

http://www.dimi.uniud.it/marcone

Joint work with Vittorio Cipriani and Manlio Valenti

Oberwolfach Workshop on Computability Theory
April 26–30, 2021



The project

In a 2015 Dagstuhl seminar I asked “What do the Weihrauch
hierarchies look like once we go to very high levels of reverse
mathematics strength?”

In other words, I proposed to study the multi-valued functions
arising from theorems which lie around ATR0 and Π1

1-CA0.

People who have worked to this project, mainly at the level of
ATR0, so far include Takayuki Kihara, Arno Pauly, Jun Le Goh,
Jeff Hirst, Paul-Elliot Anglès d’Auriac, and Manlio Valenti.

We are now moving to the level of Π1
1-CA0.
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Represented spaces

A representation σX of a set X is a surjective partial function
σX : ⊆NN → X.

The pair (X,σX) is a represented space.

If x ∈ X a σX -name for x is any p ∈ NN such that σX(p) = x.

Representations are analogous to the codings used in reverse
mathematics to speak about various mathematical objects in
subsystems of second order arithmetic.



The negative representation of closed
sets

Let (X,α, d) be a computable metric space.

In the negative representation of the set A−(X) of closed subsets
of X a name for the closed set C is a sequence of open balls with
center in D and rational radius whose union is X \ C.
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When X = NN or X = 2N the negative representation is
computably equivalent to the representation of C by a tree
T ⊆ N<N such that [T ] = C.



Realizers

If (X,σX) and (Y, σY ) are represented spaces and f : ⊆X ⇒ Y a
realizer for f is a function F : ⊆NN → NN such that
σY (F (p)) ∈ f(σX(p)) whenever f(σX(p)) is defined, i.e. whenever
p is a name of some x ∈ dom(f).

p ∈ NN F //

σX

��

F (p) ∈ NN

σY
��

x ∈ X //
f
// y ∈ f(x)

Notice that different names of the same x ∈ dom(f) might be
mapped by F to names of different elements of f(x).

f is computable if it has a computable realizer.



Weihrauch reducibility
Let f : ⊆X ⇒ Y and g : ⊆Z ⇒W be partial multi-valued
functions between represented spaces. f ≤W g means that the
problem of computing f can be computably and uniformly solved
by using in each instance a single computation of g.

Φ ΨG

F

p F (p)

If G is a realizer for g then F is a realizer for f .

1 Φ : ⊆NN → NN is a computable function that modifies (a
name for) the input of f to feed it to g;

2 Ψ : ⊆NN × NN → NN is a computable function that, using
also (the name for) the original input, transforms (the name
of) any output of g into (a name for) a correct output of f .



Arithmetic Weihrauch reducibility

Arithmetic Weihrauch reducibility ≤aW is obtained from Weihrauch
reducibility by relaxing the condition on Ψ and Φ and requiring
them to be arithmetic rather than computable.

It is immediate that f ≤W g implies f ≤aW g.

Arithmetic Weihrauch reducibility was introduced by Kihara-Anglès
D’Auriac and independently by Goh.



The Weihrauch lattice

≤W is reflexive and transitive and induces the equivalence relation
≡W. The ≡W-equivalence classes are called Weihrauch degrees.

The partial order on the sets of Weihrauch degrees is a distributive
bounded lattice with several natural and useful algebraic
operations: the Weihrauch lattice.



Products

The parallel product of f : ⊆X ⇒ Y and g : ⊆Z ⇒W is
f × g : ⊆X × Z ⇒ Y ×W defined by

(f × g)(x, z) = f(x)× g(z).

The compositional product f ? g satisfies

f ? g≡W max
≤W

{f1 ◦ g1 | f1≤W f ∧ g1≤W g}

and thus is the hardest problem that can be realized using first g,
then something computable, and finally f .



Parallelization

If f : ⊆X ⇒ Y is a multi-valued function, the (infinite)
parallelization of f is the multi-valued function f̂ : XN ⇒ Y N with
dom(f̂) = dom(f)N defined by f((xn)n∈N) =

∏
n∈N f(xn).

f̂ computes f countably many times in parallel.

f is parallelizable if f̂ ≡W f .

The finite parallelization of f is the multi-valued function
f∗ : X∗ ⇒ Y ∗ where X∗ =

⋃
i∈N({i} ×Xi) with

dom(f∗) = dom(f)∗ defined by f∗(i, (xj)j<i) = {i}×
∏
j<i f(xj).

The unbounded finite parallelization of f is a multi-valued function
f∗u (recently introduced by Soldà and Valenti) which behaves as
f∗ but does not bound a priori the number of instances of f that
will be used.



Some examples

• The limited principle of omniscience is the function
LPO : NN → 2 such that LPO(p) = 0 iff ∀i p(i) = 0.

• lim : ⊆(NN)N → NN maps a convergent sequence in Baire
space to its limit.

lim is parallelizable, while LPO is not (and in fact L̂PO≡W lim).



Choice functions

Let X be a computable metric space and recall that A−(X) is the
space of its closed subsets represented by negative information.

CX : ⊆A−(X) ⇒ X is the choice function for X: it picks from a
nonempty closed set in X one of its elements.

UCX : ⊆A−(X)→ X is the unique choice function for X: it picks
from a singleton (represented as a closed set) in X its unique
element (in other words, UCX is the restriction of CX to
singletons).

TCX : A−(X) ⇒ X is the total continuation of the choice
function for X: it extends CX by setting TCX(∅) = X.

In general we have UCX ≤W CX ≤W TCX and, for example,
UCN≡W CN<W TCN, UC2N <W C2N ≡W TC2N and
UCNN <W CNN <W TCNN .



The Weihrauch lattice
and reverse mathematics

We can locate theorems in the Weihrauch lattice by looking at the
multi-valued functions they naturally translate into.

In most cases the Weihrauch lattice refines the classification
provided by reverse mathematics: statements equivalent over
RCA0 may give rise to functions with different Weihrauch degrees.

Weihrauch reducibility is finer because requires both uniformity
and use of a single instance of the harder problem.

• computable functions correspond to RCA0;

• C2N corresponds to WKL0;

• lim and its iterations correspond to ACA0;

• the interval of the Weihrauch lattice between UCNN and TC∗NN

corresponds to ATR0.



Arithmetical Transfinite Recursion in
the Weihrauch lattice

ATR is the function producing, for a well-order X, a jump
hierarchy along X.

Theorem (Kihara-M-Pauly 2020)

UCNN ≡W ATR.

ATR2 is the function producing, for a linear order X, either a jump
hierarchy along X or a descending sequence in X.

Theorem (Goh 2019)

UCNN <W ATR2<W CNN and the inequalities are strict even with
respect to arithmetic reducibility.



The function corresponding to Π1
1-CA0

Tr is the set of subtrees of N<N.

• χΠ1
1

: Tr→ 2 such that χΠ1
1
(T ) = 1 iff T is well-founded.

• Π1
1-CA = χ̂Π1

1
: TrN → 2N maps (Tn)n∈N to the characteristic

function of {n ∈ N | Tn is well-founded }.

Π1
1-CA is the natural candidate to correspond to Π1

1-CA0.



The perfect tree theorem

The Perfect Tree Theorem asserts that if T ∈ Tr, then either [T ] is
countable or T has a perfect subtree.

In reverse mathematics it is equivalent to ATR0.

• PTT1 : ⊆Tr ⇒ Tr maps a tree with uncountably many paths
to the set of its perfect subtrees.

• List : ⊆Tr ⇒ (NN)N × N maps a tree with no perfect subtree
to a list of its paths and their number.

• wList : ⊆Tr ⇒ (NN)N maps a tree with no perfect subtree to
a list of its paths.

• PTT2 : ⊆Tr ⇒ Tr× (NN)N maps a tree to a pair (T ′, (pn))
such that either T ′ is a perfect subtree of T or (pn) lists [T ].



The perfect tree theorem in the
Weihrauch lattice

Theorem (Kihara-M-Pauly 2020)

UCNN , List, wList

CNN , PTT1

TCNN

PTT2

TC∗NN ,PTT∗2

Π1
1-CA



The perfect set theorem
The perfect set theorem deals with closed sets in Polish spaces.
In reverse mathematics it is equivalent to ATR0.

For X a computable Polish space let PST1,X : A−(X) ⇒ A−(X)
be the function mapping an uncountable closed set C to a perfect
closed subset of C.

Theorem (Cipriani-M-Valenti)

CNN ,PTT1

PST1,2N ,PST1,NN

ATR2

UCNN

Moreover CNN ≡W lim ?PST1,NN so that CNN ≡aW PST1,NN .



Perfect kernels of trees

The Perfect Kernel Theorem asserts that if T ∈ Tr, then T has a
largest (possibly empty) perfect subtree, called the perfect kernel
of T .

In reverse mathematics it is equivalent to Π1
1-CA0.

Let PKTr : Tr→ Tr be the function that maps a tree T to its
perfect kernel.

Theorem (Hirst 2020)

Π1
1-CA≡W PKTr.



Perfect kernels of closed sets
The perfect kernel theorem extends to closed sets in Polish spaces.

For X a computable Polish space let PKX : A−(X)→ A−(X) be
the function mapping a closed set C to its perfect kernel, i.e. the
largest perfect closed subset of C.

Theorem (Cipriani-M-Valenti)

Π1
1-CA,PKTr

PK2N ,PKNN

CNN

PST1,2N ,PST1,NN

Moreover Π1
1-CA≤W lim ?PKNN so that Π1

1-CA ≡aW PKNN .



The Cantor-Bendixson Theorem for
trees

The Cantor-Bendixson Theorem for trees asserts that if T ∈ Tr,
then T has a (possibly empty) perfect subtree T ′ such that
[T ] \ [T ′] is countable. T ′ is in fact the perfect kernel of T and
[T ] \ [T ′] is called the scattered part of T .

In reverse mathematics it is equivalent to Π1
1-CA0.

CBTr : Tr ⇒ Tr× (NN)N × N maps a tree T to the perfect kernel
of T , a list of the scattered part of T and its size.

wCBTr : Tr ⇒ Tr× (NN)N maps a tree T to the perfect kernel of
T and a list of the scattered part of T .

Theorem (Cipriani-M-Valenti)

Π1
1-CA≡W wCBTr≡W CBTr.



The Cantor-Bendixson Theorem for
closed sets

The Cantor-Bendixson Theorem also extends to closed sets in
Polish spaces.

For X a computable Polish space
CBX : A−(X) ⇒ A−(X)×XN × N maps a closed set C to the
perfect kernel of C, a list of the scattered part of C and its size.

wCBX : Tr ⇒ A−(X) ⇒ A−(X)×XN maps a closed set C to
the perfect kernel of C and a list of the scattered part of C.



The Cantor-Bendixson Theorem for
closed sets in the Weihrauch lattice

Theorem (Cipriani-M-Valenti)

PK2N ,PKNN ,wCB2N ,wCBNN ,CB2N

CNN

CBNN

Π1
1-CA,PKTr,wCBTr,CBTr

We do not know whether CNN ≤W CBNN .



Summing up

PK2N ,PKNN ,wCB2N ,wCBNN ,CB2N

CNN ,PTT1

Π1
1-CA,PKTr,wCBTr,CBTr

CBNN

ATR2

PST1,2N ,PST1,NN

UCNN



The first order part

Definition (Dzhafarov-Solomon-Yokoyama)

The first order part of f : ⊆X ⇒ Y is a specific function
1f : ⊆NN ×X ⇒ N such that its Weihrauch degree is
max{ g | g≤W f ∧ the codomain of g is N }

Theorem (Soldà-Valenti)

If f = ĥ then 1f ≡W h∗u.
If h is total, pointed and with codomain N, then h∗u≡W h�.

Since Π1
1-CA≡W χ̂Π1

1
, we have 1Π1

1-CA = χ∗u
Π1

1
= χ�

Π1
1
.

On the other hand, we show that 1PKNN ≡W Π1
1-CN<W χ∗u

Π1
1
.

This yields Π1
1-CA�W PKNN .



The deterministic part

Definition (Goh-Pauly-Valenti)

The deterministic part of f : ⊆X ⇒ Y is a specific function
Det(f) : ⊆NN ×X → NN such that its Weihrauch degree is
max{ g | g≤W f ∧ the codomain of g is NN ∧ g is single-valued }

We use the deterministic part to show Π1
1-CA�W CBNN by proving

that the solutions to Det(CBNN) are hyperarithmetic in the input.



The completion

In the proof of wCB2N ≤W PK2N we use the completion of a
multi-valued function (originally due to Dzhafarov and
Brattka-Gherardi).



Direction for further research

• Does CNN ≤W CBNN?

• Extend the research to computable Polish spaces other than
NN and 2N. Here CBX is probably the most interesting
function.

• Move on to other theorems equivalent to Π1
1-CA0.



The end

Thank you for your attention!
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