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HTP: Hilbert’s Tenth Problem

Definition
For a ring R, Hilbert’s Tenth Problem for R is the set

HTP(R) = {f ∈ R[X0,X1, . . .] : (∃~a ∈ R<ω) f (a0, . . . ,an) = 0}

of all polynomials (in several variables) with solutions in R.

So HTP(R) is computably enumerable from the atomic diagram ∆(R).

Hilbert’s original formulation in 1900 demanded a decision procedure
for HTP(Z).

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970)

HTP(Z) is undecidable: indeed, HTP(Z) ≡1 ∅′.

MDPR showed that ∅′ is diophantine in Z, i.e., ∃-definable there.

Russell Miller (CUNY) Generic Algebraic Fields Oberwolfach, April 2021 2 / 18



HTP: Hilbert’s Tenth Problem

Definition
For a ring R, Hilbert’s Tenth Problem for R is the set

HTP(R) = {f ∈ R[X0,X1, . . .] : (∃~a ∈ R<ω) f (a0, . . . ,an) = 0}

of all polynomials (in several variables) with solutions in R.

So HTP(R) is computably enumerable from the atomic diagram ∆(R).

Hilbert’s original formulation in 1900 demanded a decision procedure
for HTP(Z).

Theorem (Matiyasevich-Davis-Putnam-Robinson, 1970)

HTP(Z) is undecidable: indeed, HTP(Z) ≡1 ∅′.

MDPR showed that ∅′ is diophantine in Z, i.e., ∃-definable there.

Russell Miller (CUNY) Generic Algebraic Fields Oberwolfach, April 2021 2 / 18



Hilbert’s Tenth Problem for Q

Major Open Problem
The Turing degree of HTP(Q) is unknown! All Σ1 degrees are possible.

If Z is existentially definable in the field Q, then we would have
HTP(Q) ≡ HTP(Z). At present the best-known definition of Z in Q is
purely universal (Koenigsmann, 2016). The same situation applies in
number fields, i.e., finite algebraic extensions of Q.

Here we will go upwards from Q, considering algebraic field extensions
E ⊇ Q – or equivalently, subfields of the algebraic closure Q – more
generally.
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The space Sub(Q) of all subfields of Q
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The nodes × are impossible: if we have ruled out
√

2, then E cannot
contain both

√
3 and

√
6. But we still get a decidable subtree of 2<ω,

with no terminal nodes and no isolated paths. So the set of paths
through it, which is the set of all subfields of Q, is homeomorphic to 2ω.
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Our question
Determining HTP(Q) is too hard.

Determining HTP(Q) is too easy.

We ask: what is the general situation for (presentations of) subfields F
of Q?

“General situation” could refer to either measure theory, or Baire
category. No canonical measure on this space Sub(Q) is yet known,
so we use Baire category, considering comeager subsets of the space
to be “large.” Since the set of all generic subsets of ω is comeager in
Cantor space 2ω, we are naturally led to examine generic sets.

Given a polynomial f ∈ Q[Y1, . . . ,Ym], which generic fields contain a
solution to f = 0? We address this mainly for m > 1, as for m = 1 there
are only finitely many solutions in Q.
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Topology of Sub(Q)

The clopen subsets of Sub(Q) are those of the form:

Ua;b = {E ∈ Sub(Q) : Q(a) ⊆ E & E ∩ b = ∅}.

These form a basis for the topology on Sub(Q), giving us a notion of
density. Moreover, since this topological space is computable, the
usual notions of genericity make sense.

A weakly 1-generic field is a field that lies in every dense c.e. open set,
i.e., in every dense, computably enumerable union of these basis sets.
For most of the work here, weak 1-genericity will suffice, so “generic”
will mean “weakly-1-generic.”

An n-generic field lies in every dense ∅(n)-computable union of basis
sets.
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Forcing in Sub(Q)

Each (a; b) from Q<ω is a condition. For both existential and universal
sentences ϕ, we say that (a; b) 
 ϕ if {E : E |= ϕ} is dense in Ua,b.

When ϕ is ∀~Yψ(~Y ), for instance (∀~Y ) f (~Y ) 6= 0,

(a; b) 
 ∀~Yψ(~Y ) ⇐⇒ all E ∈ Ua;b satisfy ∀~Yψ(~Y ).

When ϕ is ∃~Yψ(~Y ), for instance (∃~Y ) f (~Y ) = 0,

(a; b) 
 ∃~Yψ(~Y ) ⇐⇒ density holds.

In each case, every generic E ∈ Ua;b must realize the sentence forced.

Intuition: working within Q (with m > 1), one imagines that there
should be some way to find a solution to f (~Y ) = 0 in some field in Ua;b.
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Density of solutions to f = 0 can fail!

Example where density fails: consider the sentence

(∃Y1∃Y2) Y 2
1 − 2Y 2

2 = 0 6= Y1Y2.

Let (a; b) be (λ;
√

2), so Ua;b contains all fields E that omit both ±
√

2.

With the solution (0,0) ruled out, each nonzero solution (y1, y2) ∈ Q2

has (
y1

y2

)2

=
y2

1

y2
2

=
2y2

2

y2
2

= 2.

So no field in Ua,b can contain any such solution, and

(a; b) 
 (∀Y1,Y2) ¬[Y 2
1 − 2Y 2

2 = 0 6= Y1Y2].
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Things happen for a reason

Density of solutions to f = 0 can fail if every solution generates an
element forbidden by the condition (a; b).
In our example, there was a reason: the formula Y1

Y2
produces the

forbidden
√

2 from every nonzero solution to f (Y1,Y2) = 0.

If we find such a formula, we know that density of solutions fails. But is
there always such a reason?

Theorem (cf. Stichtenoth, Cor. III.6.7)

A polynomial f , irreducible in F [~Y ], is absolutely irreducible ⇐⇒
F is algebraically closed within the function field of f over F .

Here the function field is the fraction field of the domain F [~Y ]/(f ).
Absolutely irreducible means that f remains irreducible over F .
In our example this fails: Y 2

1 − 2Y 2
2 = (Y1 + Y2

√
2)(Y1 − Y2

√
2) in Q.
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Refining the corollary

We want to consider the fields F = Q(a) and K = F (b), for a condition
(a; b).

Theorem

For K/F a finite Galois extension, and f irreducible in F [~Y ]:
f remains irreducible in K [~Y ] iff the function field of f over F intersects
K only in F .

Now, Case 1: if f (Y1, . . . ,Ym) remains irreducible over K , then the
Hilbert Irreducibility Theorem will give y1, . . . , ym−1 ∈ Q such that
f (y1, . . . , ym−1,Ym) stays irreducible in K [Ym]. In this case, each root
ym ∈ Q has this as its minimal polynomial over K , hence does not
generate any element of K when adjoined to F . Thus F (ym) is a field
in Ua;b containing a solution to f = 0.
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The reason appears

Case 2: if f (Y1, . . . ,Ym) becomes reducible over K , then by the

theorem, some element p(~Y )+(f )
q(~Y )+(f )

of the function field lies in K but

outside F . Breaking into finitely many cases, we can assume that in
fact this element is one of the forbidden bi ’s.
So this is the “reason”: every solution f (~y) = 0 will have p(~y)+0

q(~y)+0 = bi .

But then how did the solution (0,0) to Y 2
1 = 2Y 2

2 survive?
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Full answer
Solutions f (~y) = 0 may still be possible in fields in Ua;b, but the only
way for ~y to avoid generating bi (over F ) is to have q(~y) = 0.

Now in the function ring F [~Y ]/(f ), we may choose q(~Y ) + (f ) so that
Ym has smaller degree in q than in f : use the Euclidean algorithm
modulo (f ). This is progress, reducing the question of solvability of
f = 0 (in fields in Ua;b) to that of solvability of a polynomial q of lesser
multidegree.

Details: we get a remainder r with degYm
(r) < degYm

(q) < degYm
(f )

and f (~Y ) · c(Y1, . . . ,Ym−1) = q(~Y ) · b(Y1, . . . ,Ym−1) + r(~Y ).
Now, for tuples ~y with K ∩ F (~y) = F ,

f (~y) = 0 ⇐⇒ [q(~y) = r(~y) = 0 6= c(~y) or f (~y) = c(~y) = 0].

The final step is to well-order existential sentences in such a way that
the right side has lower rank than the original ∃~Y f (~Y ) = 0.
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Well-ordering existential sentences
We rank an existential sentence of the form

(∃Y1 · · · ∃Ym) f1(~Y ) = · · · = fn(~Y ) = 0 6= g(~Y )

as follows (assuming g /∈ V(f1, . . . , fn)):
first according to m, the dimension of the ambient space;
next, according to the Krull dimension of the variety V(f1, . . . , fn);
and finally according to the multidegrees of f1, . . . , fm (arranged in
nonincreasing order by multidegree).

If α1 ∨ · · · ∨αj and β1 ∨ · · · ∨ βj are disjunctions of formulas of this form,
put each in nonincreasing order under the above ranking. To compare
them, compare α1 to β1; if these have the same rank, go on to α2 and
β2, etc.

This is a well-order, and our sentence with q and r above does indeed
have lower rank than the original sentence ∃~Y f = 0.
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Conclusions

Conclusion (after further details!)
There is an effective procedure that decides, for all existential formulas
ϕ in the language of fields and for all tuples a; b from a fixed
computable presentation of Q, whether (a; b) 
 ϕ, and also whether
(a; b) 
 ¬ϕ.

So, if we are given the atomic diagram ∆(E) of a generic subfield of Q,
then HTP(E) will be decidable from {(a; b) : E ∈ Ua;b}.

Theorem (EMSW)
For each generic subfield E , HTP(E) ≡T E , where E is presented as a
subset of Q.

The procedures above assumed m > 1. For polynomials f ∈ E [Y1],
simply find all the roots of f in Q, and ask the E-oracle whether each of
them lies in E .
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Rabin’s Theorem

So, for all generic algebraic fields E , HTP(E) is decidable relative to its
presentation as a subfield of Q. But what happens if we have a
presentation of E as a freestanding field (i.e., if we have the atomic
diagram ∆(E))? This requires the famous theorem of Rabin (1960).

The index of E is the set

IE = {irreducible h ∈ Z[X ] : h(X ) has a root in E}.

This is an invariant of the isomorphism type of E , and distinct for
distinct isomorphism types.

From ∆(E) itself we can uniformly compute an embedding ε of E into
Q, and thus enumerate the tuples a with Q(a) ⊆ ε(E). But the ability to
enumerate the tuples b disjoint from ε(E) is equivalent to knowing IE
as well: ε(E) ≡T ∆(E)⊕ IE . This is the essence of Rabin’s Theorem.

Russell Miller (CUNY) Generic Algebraic Fields Oberwolfach, April 2021 15 / 18



Rabin’s Theorem

So, for all generic algebraic fields E , HTP(E) is decidable relative to its
presentation as a subfield of Q. But what happens if we have a
presentation of E as a freestanding field (i.e., if we have the atomic
diagram ∆(E))? This requires the famous theorem of Rabin (1960).

The index of E is the set

IE = {irreducible h ∈ Z[X ] : h(X ) has a root in E}.

This is an invariant of the isomorphism type of E , and distinct for
distinct isomorphism types.

From ∆(E) itself we can uniformly compute an embedding ε of E into
Q, and thus enumerate the tuples a with Q(a) ⊆ ε(E). But the ability to
enumerate the tuples b disjoint from ε(E) is equivalent to knowing IE
as well: ε(E) ≡T ∆(E)⊕ IE . This is the essence of Rabin’s Theorem.

Russell Miller (CUNY) Generic Algebraic Fields Oberwolfach, April 2021 15 / 18



Indices of generic fields

For generic algebraic fields, the index IE is not computable from a
freestanding presentation ∆(E) in general, even nonuniformly.

Theorem (M, 2020)
Every generic algebraic field has a presentation ∆(E) such that
IE 6≤T ∆(E). However, all presentations satisfy (IE )′ ≤T (∆(E))′:
IE is always low relative to ∆(E).

Spec(E)

r���
�

A
A
A
A

deg(IE )
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Freestanding presentations of generic fields

Theorem (EMSW)
Every generic algebraic field has a presentation ∆(E) for which
HTP(E) 6≤T ∆(E). However, all presentations of generic fields satisfy
HTP(E) ≡T HTP1(E) ≡T IE ⊕∆(E), and this degree is always low
relative to ∆(E).

Here HTP1(E) represents the restriction of HTP(E) to polynomials in a
single variable. This set is also known as the root set RE of E .
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Addendum

We now have a procedure for deciding, for arbitrary f and any
condition (a; b), whether (a; b) forces f (~Y ) = 0 to have infinitely many
solutions, and also whether it forces f (~Y ) = 0 to have only finitely
many solutions. The foregoing results are at the heart of this
procedure. This means that for 2-generic subfields of Q, deciding
whether polynomials have infinitely many solutions is exactly as hard
as deciding whether they have solutions at all.

The question of forcing Σ0
2 or Π0

2 properties more generally remains
open.
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