Lines and points

discussion with Linda Westrick, Jan Reimann, Kolmogorov seminar et al.

Thanks & Apologies

- there exist an everywhere complex sequence: any factor of length n has complexity 0.99n O(1)
- Lovasz local lemma: extension of union bound with partial independence

let (X, I) be a random pair of incident point and line on the affine plane \mathbb{F}^2 with $\#\mathbb{F} = 2^n$ $C(X) = 2n_y \cdot C(I) = 2n_y \cdot C(X, I) = 3n_y \cdot I(X:I) = n$ there is no string (u) such that $C(u) \approx n$, $C(X|u) \approx n$,

incidence graph is sparse inside combinatorial rectangles

 $C(I|u) \approx n$

- Pevery *n*-bit string of complexity αn (where $\alpha < 1$) can be made more complex by changing ε -fraction of bits [optimal bounds]
- Parper's theorem: Hamming balls have minimal ε -neighborhoods among all sets of given size

- For every line of Hausdorff dimension s the maximal Hausdorff dimension of its points is min(1 + s, 2) [N. Lutz & D. Stull]
- ► What about finite planes? $1 \le \xi \le 2$

For a line in \mathbb{F}^2 (where $\#\mathbb{F}\approx 2^n$) of complexity s the maximal complexity of points is s+n or 2n, whichever is smaller, plus $O(\log n)$.

Proposition

For t < 2n, if a set of points has less than $2^t/\operatorname{poly}(n)$ elements, then at most $2^t/\operatorname{poly}(n)$ lines lie entirely in this set.

Exclusion–inclusion formula (two lines intersect only in one point)

ightharpoonup Spectrum of the corresponding graph walk $\langle \psi_{-\gamma} \rangle$

Finite continuous case

- For $\alpha \in [0,1]$: $C_n(\alpha) = C(\text{first } n \text{ bits of } \alpha)$
- ightharpoonup = minimal complexity of 2^{-n} -approximation
- similar for points, lines, points on "reasonable" compact manifolds

Compactification

0 2

- problem of far points
- projective plane
- ightharpoonup 2D sphere in \mathbb{R}^3 : lines = big circles, points = points
- $ightharpoonup \mathrm{C}_n(\mathsf{big}\;\mathsf{circle}) := \mathrm{C}_n(\mathsf{pole})$

min (s+n, 2h)

Proposition

For a big circle of C_n -complexity s, the maximal C_n -complexity of its points is at least n + s/2

Much worse: s/2 in place of s. For some lines it is n+s, but for other the bound is tight

Combinatorial translation: measure of a set A vs. measure of the set of all great circles entirely in A

Proposition (Ilya Bogdanov?)

Let A and B be two measurable sets on the sphere with uniform distribution μ . Assume that for all $a \in A$, all points orthogonal to a are in B. Then

Questions

- ▶ Why the difference with infinite (Hausdorff dimension) case?
- Which combinatorial result may imply the infinite case?
- What about the distribution of points complexity along the line?
- Other natural families of sets (=bipartite graphs), e.g.,
 Hamming balls

