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Main question
Given an ill-founded linear order, how hard is it to
compute a descending sequence through it (DS)?

Pretty hard (in general)

There are computable linear orders with no hyperarithmetic
descending sequence (Kleene).

In particular, DS is very different from ADS.

What about the uniform computational content?
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Weihrauch reducibility

A represented space is a pair (X, δX) where X is just a set and
δX :⊆ NN → X is a surjection.

Let f, g be (partial multi-valued) functions on represented spaces.

f is Weihrauch reducible to g (f ≤W g) if there are computable
Φ,Ψ :⊆ NN → NN s.t.

• Given a name p for x ∈ dom(f), Φ(p) is a name for z ∈ dom(g)
• Given a name q for w ∈ g(z), Ψ(p, q) is a name for y ∈ f(x)

p
x ∈ dom(f)

Φ g Ψ Ψ(p, q)
y ∈ f(x)
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The DS problem

(LO, δLO) is the represented space of countable linear orders.

A name for ≤L is the characteristic function of

{⟨a, b⟩ ∈ N : a ≤L b}

We define DS :⊆ LO ⇒ NN as

DS(≤L) := {x ∈ NN : (∀i )(x(i + 1) <L x(i ))}

with dom(DS) := LO \ WO.
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The BS problem

Similarly to DS, consider the represented space (QO, δQO) of
countable quasi orders.

A name for ⪯Q is the characteristic function of {⟨a, b⟩ ∈ N : a ⪯Q b}

BS :⊆ QO ⇒ NN :=⪯Q 7→ {x ∈ NN : (∀i < j )(x(i) ̸⪯Q x(j ))}

with dom(QO) := QO \ WQO.

Theorem (Folklore?)
DS ≡W BS
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How complicated is DS?

CNN : given an ill-founded tree T ⊂ N<N, compute a path through T
UCNN : restriction of CNN to trees with a single path

Theorem (Goh, Pauly, V.)
DS ≤W CNN and DS ̸≤W UCNN

Proof.
DS ≤W CNN : being a L-descending sequence is a Π0

1 property (in L).

DS ̸≤W UCNN : UCNN always has an hyperarithmetic solution (in the
input). UCNN

CNN

DS

?

?

Spoiler: no to both of the questions.
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First-order part of a problem

Recently introduced by (Dzhafarov, Solomon, Yokoyama).

Let FO be the set of problems with codomain N.

For f :⊆ X ⇒ Y, the first-order part of f is a problem 1f ∈ FO s.t.

1f ≡W max
≤W

{f0 ∈ FO : f0 ≤W f }

Obviously

f ≤W g ⇒ 1f ≤W
1g

1f ̸≡W
1g ⇒ f ̸≡W g
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Deterministic part of a problem

Similar as the first-order part, but now we consider single-valued
problems.

For every represented space Y and every multi-valued function f

DetY(f) ≡W max
≤W

{f0 :⊆ X → Y : f0 ≤W f }

If Y = NN we just write Det(f).

This is a degree-theoretic operator, hence

DetY(f) ̸≡W DetY(g) ⇒ f ̸≡W g
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First-order part of DS
Define Π1

1−Bound :⊆ Π1
1(N) ⇒ N as

Π1
1−Bound(A) := {b ∈ N : (∀n ∈ A)(n ≤ b)}

with dom(Π1
1−Bound) := {A ∈ Π1

1(N) : A is finite}

Theorem (Goh, Pauly, V.)
1DS ≡W Π1

1−Bound

Since 1CNN ≡W Σ1
1-CN (easy) and Π1

1−Bound <W Σ1
1-CN

(Anglès D’Auriac, Kihara), we have

Corollary (Goh, Pauly, V.)
CNN ̸≤W DS
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Deterministic part of DS
Let lim be the problem of computing the limit in the Baire space

Theorem (Goh, Pauly, V.)
Det(DS) ≡W lim

DS uniformly computes only the limit computable functions

Corollary (Goh, Pauly, V.)
UCNN ̸≤W DS
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Other characterizations
Theorem (Goh, Pauly, V.)
DetN(DS) ≡W UCN

Theorem (Goh, Pauly, V.)
If f :⊆ X ⇒ N is s.t. f(x) is finite for every x ∈ dom(f) then then

f ≤W DS ⇐⇒ f ≤W RT1
N

Theorem (Goh, Pauly, V.)
If f :⊆ X ⇒ k, then f ≤W DS ⇐⇒ f ≤W RT1

k.

Theorem (Goh, Pauly, V.)
If f :⊆ X → k, then f ≤W DS ⇐⇒ f ≤W limk.
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Overview of the Weihrauch lattice

id

LPOC2N

lim

C2

LPO′

RT1
2

RT1
N

KL

ADS

RT2
2

lim′

lim′′

CN

RT1
3

lim(n)

UCNN

CNN
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How complicated is DS?
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Presentations of orders

Let Γ ∈ {Σ0
k,Π

0
k,∆

0
k,Σ

1
1,Π

1
1,∆

1
1} and consider the represented

spaces Γ(LO) and Γ(QO).

We define Γ-DS :⊆ Γ(LO) ⇒ NN and Γ-BS :⊆ Γ(QO) ⇒ NN as
Γ-DS(≤L) := DS(≤L)

Γ-BS(⪯Q) := BS(⪯Q)

This creates a hierarchy of DS-like problems.
Γ-DS ≤W Γ-BS

Γ ⊂ Γ′ =⇒ Γ-DS ≤W Γ′-DS
Γ ⊂ Γ′ =⇒ Γ-BS ≤W Γ′-BS
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An arithmetic DS hierarchy

∆0
k-DS

∆0
k-BS

∆0
k+1-DS

∆0
k+1-BS

Σ0
k-DS

Σ0
k-BS

Π0
k-DS

Π0
k-BS
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An arithmetic DS hierarchy

UCNN

CNN

DS ≡W BS ≡W Σ0
1-DS

Σ0
2-DS ≡W ∆0

2-DS ≡W ∆0
2-BS

Π0
1-DS ≡W Π0

1-BS

Σ0
2-BS

Σ0
1-BS
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Beyond the arithmetic classes

∆1
1-DS is the first level of the DS hierarchy that computes UCNN .

Theorem (Goh, Pauly, V.)
UCNN <W ∆1

1-DS ≡W DS ∗ UCNN

However it does not reach CNN :

Theorem (Goh, Pauly, V.)
1CNN ≡W Σ1

1-CN ̸≤W ∆1
1-DS, and hence CNN ̸≤W ∆1

1-DS.

To compute Σ1
1-CN we need to climb a step higher

Theorem (Goh, Pauly, V.)
Σ1

1-CN <W Σ̂1
1-CN ≤W Σ1

1-DS

Does Σ1
1-DS reach the level of CNN?
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Σ̂1
1-CN and ATR2

(Kihara, Marcone, Pauly) showed that UCNN <W Σ̂1
1-CN ≤W CNN .

The problem “CNN ≤W Σ̂1
1-CN?” was answered negatively by

(Anglès D’Auriac, Kihara) using the problem ATR2, introduced by
Goh:

ATR2: Given a linear order L, produce either a L-descending
sequence or a jump hierarchy supported on L (and a bit indicating
which one). UCNN <W ATR2 <W CNN

Theorem (Anglès D’Auriac, Kihara)
ATR2 ̸≤W Σ̂1

1-CN and hence Σ̂1
1-CN <W CNN
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Σ1
1-DS and ATR2

Extending the technique used by (Anglès D’Auriac, Kihara), we
can prove a stronger result

Theorem (Goh, Pauly, V.)
ATR2 ̸≤W Σ1

1-DS and hence Σ1
1-DS <W CNN

The proof is based on the following result

Theorem (Goh)
Let wf be the set of indices for well-founded linear orders, and let
hds be the set of indices for linear orders with HYP descending
sequences.
Any Σ1

1 set separating wf and hds is complete.

We show that a reduction ATR2 ≤W Σ1
1-DS would yield a ∆1

1 set
separating wf and hds.
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Beyond the arithmetic classes

The problems Σ1
1-BS and Π1

1-DS are much stronger

Π1
1-CA is the analogue of Π1

1−CA0: given a sequence (Ti)i∈N,
produce x ∈ 2N s.t. x(i ) = 1 ⇐⇒ [Ti ] = ∅

Theorem (Goh, Pauly, V.)
Π1

1-CA ≤W Σ1
1-BS and Π1

1-CA ≤W Π1
1-DS

Σ1
1-BS and Π1

1-DS can be used to compute the leftmost path of
an ill-founded tree.
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Beyond the arithmetic classes

UCNN

CNN

Π1
1-CA

∆1
1-DS

Σ1
1-DS

Π1
1-DSΣ1

1-BS
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