# What Could We Be, If Not Rational?

#### Wesley Calvert



## AMS Central Section Meeting Loyola, October 4, 2015

Wesley Calvert (SIU)

Irrationality

## "If I err in my own conduct, I do not err intentionally, but from ignorance." — Socrates

- Wendy is taller than Mark.
- Bill is taller than Jenny.
- Jenny is taller than Wendy.

What is the correct order of height?

- Wendy is taller than Mark.
- Bill is taller than Jenny.
- Jenny is taller than Wendy.

What is the correct order of height?

Laboratory results of less than 50% success have been recorded.

- Wendy is taller than Mark.
- Bill is taller than Jenny.
- Jenny is taller than Wendy.

What is the correct order of height?

Laboratory results of less than 50% success have been recorded. But it's simple to prove.

### Mental Models Hypothesis (Johnson-Laird 1983, and others)

We reason by generating a mental representation to provide a workspace for inference and mental operations.

## Experiment (Baillargeon 1987)

Put a box behind a rotating panel, and then have a 4-month-old watch as you rotate the panel through where the box should be.

## Experiment (Baillargeon 1987)

Put a box behind a rotating panel, and then have a 4-month-old watch as you rotate the panel through where the box should be.

### Result

The baby stares a lot more at this when the box was there than when it wasn't.

## Experiment (Baillargeon 1987)

Put a box behind a rotating panel, and then have a 4-month-old watch as you rotate the panel through where the box should be.

#### Result

The baby stares a lot more at this when the box was there than when it wasn't.

#### Interpretation

4-month-olds are representing the box when they can't see it.

### Experiment (McCloskey 1983)

Show people an airplane, and ask where a bomb dropped by the airplane will land.

## Experiment (McCloskey 1983)

Show people an airplane, and ask where a bomb dropped by the airplane will land.

### Result

They'll predict that the bomb falls well short of where it really would. Even if they got a good grade in physics.

## Experiment (McCloskey 1983)

Show people an airplane, and ask where a bomb dropped by the airplane will land.

#### Result

They'll predict that the bomb falls well short of where it really would. Even if they got a good grade in physics.

#### Interpretation

They believe the bomb got its "impetus" to move from the plane, and loses it when it leaves the plane.

## Experiment (Classical)

Give many binary comparisons, and ask subjects to reason from transitivity.

## Experiment (Classical)

Give many binary comparisons, and ask subjects to reason from transitivity.

### Result

The error rate depends on the total number of items given, not so much on the number needed for the inference. This works with both children and adults

## Experiment (Classical)

Give many binary comparisons, and ask subjects to reason from transitivity.

### Result

The error rate depends on the total number of items given, not so much on the number needed for the inference. This works with both children and adults

#### Interpretation

Subjects solve the problem by constructing the full ordering.

## Experiment (Hale 1962)

Ask people to explain why a syllogism is valid.

## Experiment (Hale 1962)

Ask people to explain why a syllogism is valid.

### Result

Their explanations usually reckon by the factual accuracy of the premises and conclusions.

## Experiment (Hale 1962)

Ask people to explain why a syllogism is valid.

### Result

Their explanations usually reckon by the factual accuracy of the premises and conclusions.

Interpretation

People do not check validity by theorem-proving, but by model checking.

### Experiment (Kahneman–Tversky 1973)

Show subjects personality descriptions, drawn from a purported pool of "engineers" and "lawyers." Tell them the pool is 70% lawyers (or engineers). Ask for the probability that a particular description is a lawyer.

### Experiment (Kahneman–Tversky 1973)

Show subjects personality descriptions, drawn from a purported pool of "engineers" and "lawyers." Tell them the pool is 70% lawyers (or engineers). Ask for the probability that a particular description is a lawyer.

### Result

It doesn't matter which you tell them is a majority; they seem to ignore this information. If you don't show them a personality description, they use the prior probability.

## Experiment (Kahneman-Tversky 1972)

Ask: Which has more days with more baby girls born than baby boys: a larger hospital, or a smaller one?

## Experiment (Kahneman-Tversky 1972)

Ask: Which has more days with more baby girls born than baby boys: a larger hospital, or a smaller one?

#### Result

Most people think they will be about the same.

## Experiment (Kahneman-Tversky 1971)

Ask an experienced quantitative psychologist: Suppose you have run an experiment on 20 subjects and have obtained a significant result which confirms your theory (z = 2.23, p < .05, two-tailed). You now have cause to run an additional group of 10 subjects. What do you think the probability is that the results will be significant, by a one-tailed test, separately for this group?

## Experiment (Kahneman-Tversky 1971)

Ask an experienced quantitative psychologist: Suppose you have run an experiment on 20 subjects and have obtained a significant result which confirms your theory (z = 2.23, p < .05, two-tailed). You now have cause to run an additional group of 10 subjects. What do you think the probability is that the results will be significant, by a one-tailed test, separately for this group?

#### Result

Most subjects say about .85. The truth is closer to .48.

What kind of mental models do people have that cause them to make these mistakes?

1 - BASIC is the (incomplete) theory in the language  $(+, cdot, \leq, 0, 1)$  axiomatized by  $(\forall x \forall y)$ :

x + 1 ≠ 0
(x + 1 = y + 1) → (x = y)
x + 0 = x
x + (y + 1) = (x + y) + 1
0 + 1 = 1
x ⋅ 0 = 0
x ⋅ (y + 1) = (x ⋅ y) + x
(x ≤ y ∧ y ≤ x) → (x = y)

## True Arithmetic (TA) is the first-order theory of $(\mathbb{N}, +, \cdot, \leq, 0, 1)$ .

True Arithmetic (TA) is the first-order theory of  $(\mathbb{N}, +, \cdot, \leq, 0, 1)$ .

### Theorem

If  $\varphi$  is a quantifier-free sentence, then  $\mathsf{TA} \vdash \varphi$  if and only if  $1 - \mathsf{BASIC} \vdash \varphi$ .

Let  $\Phi$  be a set of formulas. Then  $\Phi\text{-induction}$  is the schema

$$[\varphi(0) \land (\forall x \ \varphi(x) \to \varphi(x+1))] \to \forall z \ \varphi(z)$$

where  $\varphi$  ranges over all elements of  $\Phi$ .

Let  $\Phi$  be a set of formulas. Then  $\Phi\text{-induction}$  is the schema

$$[\varphi(0) \land (\forall x \ \varphi(x) \to \varphi(x+1))] \to \forall z \ \varphi(z)$$

where  $\varphi$  ranges over all elements of  $\Phi$ .

#### Definition

 $I\Phi$  is the (incomplete) theory axiomatized by  $1 - Basic and \Phi$ -induction.

Let  $\Phi$  be a set of formulas. Then  $\Phi\text{-induction}$  is the schema

$$[\varphi(0) \land (\forall x \ \varphi(x) \rightarrow \varphi(x+1))] \rightarrow \forall z \ \varphi(z)$$

where  $\varphi$  ranges over all elements of  $\Phi$ .

#### Definition

 $I\Phi$  is the (incomplete) theory axiomatized by 1 - Basic and  $\Phi$ -induction.

#### Definition

If  $\Phi$  is the full set of formulas, then  $I\Phi = PA$ .

# Theorem (Parikh 1971)

 $I\Delta_0$  does not prove  $\forall x \exists y [y = 2^x]$ .

## Theorem (Parikh 1971)

 $I\Delta_0$  does not prove  $\forall x \exists y [y = 2^x]$ .

### Theorem

Commutative and associative properties of addition are not provable in 1 - BASIC, but they are provable in IOPEN.

A set S is in  $NLinTime^{R}$  if it is decidable in time O(n) on a nondeterministic multi-tape Turing machine with oracle R. We further define

A set S is in  $NLinTime^{R}$  if it is decidable in time O(n) on a nondeterministic multi-tape Turing machine with oracle R. We further define

• 
$$\Sigma_1^{lin} = NLinTime^{\emptyset}$$

A set S is in  $NLinTime^{R}$  if it is decidable in time O(n) on a nondeterministic multi-tape Turing machine with oracle R. We further define

# Definition

A set S is in  $NLinTime^{R}$  if it is decidable in time O(n) on a nondeterministic multi-tape Turing machine with oracle R. We further define

• 
$$\Sigma_{1}^{lin} = NLinTime^{\emptyset}$$
  
•  $\Sigma_{n+1}^{lin} = NLinTime^{\Sigma_{n}^{lin}}$   
•  $LTH = \bigcup_{i} \Sigma_{i}^{lin}$ 

# Definition

A set S is in  $NLinTime^R$  if it is decidable in time O(n) on a nondeterministic multi-tape Turing machine with oracle R. We further define

- $\Sigma_1^{lin} = NLinTime^{\emptyset}$
- $\Sigma_{n+1}^{lin} = NLinTime^{\Sigma_n^{lin}}$
- $LTH = \bigcup_{i} \Sigma_{i}^{lin}$
- *FLTH* is the class of functions *f* whose graph is in *LTH* and so that the length of *f* has at most linear growth.

Theorem

## A function is $\Sigma_1$ -definable in $I\Delta_0$ if and only if it is in FLTH.

Theorem

A function is  $\Sigma_1$ -definable in  $I\Delta_0$  if and only if it is in FLTH.

There are several other complexity classes and fragments of arithmetic for which similar theorems are known.

# Theorem (Arora–Barak–Brunnermeier–Ge, 2009)

Given a pool of underlying assets (e.g. mortgages), with some identified (privately) as "lemons,"

## Theorem (Arora–Barak–Brunnermeier–Ge, 2009)

Given a pool of underlying assets (e.g. mortgages), with some identified (privately) as "lemons," one can construct a pool of collateralized debt obligations where it is difficult (equivalent to the hidden dense subgraph problem) to detect which CDO's are overweight in lemons.

#### Interpretation

A "fully rational" buyer can solve the hidden dense subgraph problem and pay a fair price (or decline to buy).

#### Interpretation

A "fully rational" buyer can solve the hidden dense subgraph problem and pay a fair price (or decline to buy). A "<u>feasibly rational</u>" buyer — that is, one with limited computational resources, can't do that.

 ${\sf High \ computational \ complexity} - {\sf Strong \ arithmetic} - {\sf Lots \ of \ mistakes}$ 

Low computational complexity — weak arithmetic — few mistakes

# Question (Castelli)

Does Common Core Mathematics really ask kids to do harder things earlier?

**K.CC.2** Count forward beginning from a given number within the known sequence (instead of having to begin at 1).

**K.CC.2** Count forward beginning from a given number within the known sequence (instead of having to begin at 1).

Theorem (1 - BASIC) $\overbrace{1+1+\cdots+1}^{n+1} = \overbrace{(1+\cdots+1)}^{n} + 1$  A-APR.2 Know and apply the remainder theorem.

A-APR.2 Know and apply the remainder theorem.

Theorem (IOPEN)  $\forall a, b \exists ! q, r [a = qb + r \land r < b]$  Problem What about lower bounds? A lower bound result was presented in the talk which was not ultimately correct.

# What Could We Be, If Not Rational?

#### Wesley Calvert



## AMS Central Section Meeting Loyola, October 4, 2015

Wesley Calvert (SIU)

Irrationality