Higher Euclidean Rings

Chris Conidis

College of Staten Island

October 4, 2015

Chris Conidis Higher Euclidean Rings

< ロ > < 同 > < 臣 > < 臣 > -

Э

Division Algorithm for \mathbb{N}

For every $0 \neq d \in \mathbb{N}$ and every $x \in \mathbb{N}$ there exist numbers $q, r \in \mathbb{N}$ such that $0 \leq r < d$ and

x = qd + r.

Chris Conidis Higher Euclidean Rings

Division Algorithm for \mathbb{N}

For every $0 \neq d \in \mathbb{N}$ and every $x \in \mathbb{N}$ there exist numbers $q, r \in \mathbb{N}$ such that $0 \leq r < d$ and

x = qd + r.

Euclidean Algorithm for \mathbb{N}

Every pair of numbers $a, b \in \mathbb{N}$ has a greatest common divisor.

Definition

Let R be a ring and $\varphi : R \to \mathbb{N}$ a function. We say that the pair (R, φ) is a *Euclidean ring* with *Euclidean norm* φ if for every $x, d \in R, d \neq 0$, there exist $q, r \in R$ such that $0 \leq \varphi(r) < \varphi(d)$ and

$$x = qd + r$$
.

Definition

Let R be a ring and $\varphi : R \to \mathbb{N}$ a function. We say that the pair (R, φ) is a *Euclidean ring* with *Euclidean norm* φ if for every $x, d \in R, d \neq 0$, there exist $q, r \in R$ such that $0 \leq \varphi(r) < \varphi(d)$ and

$$x = qd + r$$
.

Definition

A *Euclidean domain* is an integral domain that is a Euclidean ring.

直 ト イヨト イヨト

Definition

Let R be a ring and $\varphi : R \to \mathbb{N}$ a function. We say that the pair (R, φ) is a <u>Euclidean ring</u> with <u>Euclidean norm</u> φ if for every $x, d \in R, d \neq 0$, there exist $q, r \in R$ such that $0 \leq \varphi(r) < \varphi(d)$ and

$$x = qd + r$$
.

Definition

A *Euclidean domain* is an integral domain that is a Euclidean ring.

Generalized Euclidean Algorithm

If R is a Euclidean domain then R is a principal ideal domain.

同下 イヨト イヨト

Definition

Let R be a ring and $\varphi : R \to \mathbb{N}$ a function. We say that the pair (R, φ) is a *Euclidean ring* with *Euclidean norm* φ if for every $x, d \in R, d \neq 0$, there exist $q, r \in R$ such that $0 \leq \varphi(r) < \varphi(d)$ and

$$x = qd + r$$
.

Definition

A *Euclidean domain* is an integral domain that is a Euclidean ring.

Generalized Euclidean Algorithm

If R is a Euclidean domain then R is a principal ideal domain.

Example

Let R be a ring, α be an ordinal, and $\varphi : R \to \alpha$. We say that the pair (R, φ) is a <u>Transfinite Euclidean ring</u> with (Transfinite) Euclidean norm φ if for every $x, d \in R, d \neq 0$, there exist $q, r \in R$ such that $0 \leq \varphi(r) < \varphi(d)$ and

$$x = qd + r$$
.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let R be a ring, α be an ordinal, and $\varphi : R \to \alpha$. We say that the pair (R, φ) is a <u>Transfinite Euclidean ring</u> with (Transfinite) Euclidean norm φ if for every $x, d \in R, d \neq 0$, there exist $q, r \in R$ such that $0 \leq \varphi(r) < \varphi(d)$ and

$$x = qd + r$$
.

Theorem

Every transfinite Euclidean ring is a principal ideal domain.

Let R be a transfinite Euclidean ring. The Euclidean rank of R is the least ordinal α such that (R, φ) is a transfinite Euclidean ring and α is the range of φ .

Let R be a transfinite Euclidean ring. The Euclidean rank of R is the least ordinal α such that (R, φ) is a transfinite Euclidean ring and α is the range of φ .

Fact

Let R be a Euclidean ring. Then the pointwise minimum of all Euclidean functions on R is a Euclidean function on R.

Let R be a transfinite Euclidean ring. The Euclidean rank of R is the least ordinal α such that (R, φ) is a transfinite Euclidean ring and α is the range of φ .

Fact

Let R be a Euclidean ring. Then the pointwise minimum of all Euclidean functions on R is a Euclidean function on R.

Fact

There are noncommutative transfinite Euclidean rings of arbitrarily large ordinal ranks.

Question (Motzkin 1949, Samuel 1971)

Is there a properly Transfinite Euclidean Domain? In other words, is there a Euclidean Domain R with Euclidean Rank $> \omega$?

- 4 回 2 - 4 □ 2 - 4 □

Question (Motzkin 1949, Samuel 1971)

Is there a properly Transfinite Euclidean Domain? In other words, is there a Euclidean Domain R with Euclidean Rank $> \omega$?

Theorem (Hiblot and Nagata, 1975-77)

There is a Properly Transfinite Euclidean Domain of rank $\leq \omega^2$.

Limited technique.

御 と く ほ と く ほ と

A More Genreal Question

Question (Conidis, 2012)

What is the Reverse Mathematical strength of the statement (MTEF) that says "Every transfinite Euclidean ring has a minimal Transfinite Euclidean Function"?

Is there a largest possible Transfinite Euclidean Rank for all Euclidean Domains? (This generalizes Motzkin, Samuel above)

伺下 イヨト イヨト

Question (Conidis, 2012)

What is the Reverse Mathematical strength of the statement (MTEF) that says "Every transfinite Euclidean ring has a minimal Transfinite Euclidean Function"?

Is there a largest possible Transfinite Euclidean Rank for all Euclidean Domains? (This generalizes Motzkin, Samuel above)

Definition

An ordinal is *terminally-admissible* whenever it has the same cardinality as all of its tail subsets. Think countable limit ordinals and cardinals.

Question (Conidis, 2012)

What is the Reverse Mathematical strength of the statement (MTEF) that says "Every transfinite Euclidean ring has a minimal Transfinite Euclidean Function"?

Is there a largest possible Transfinite Euclidean Rank for all Euclidean Domains? (This generalizes Motzkin, Samuel above)

Definition

An ordinal is *terminally-admissible* whenever it has the same cardinality as all of its tail subsets. Think countable limit ordinals and cardinals.

Theorem (Conidis, 2013)

If α is terminally-admissible then ω^{α} is the Euclidean rank of a transfinite Euclidean domain. In particular every cardinal is the Euclidean rank of a transfinite Euclidean domain.

Let λ be terminally admissible. Let

$$R_0 = \mathbb{Q}[X_\alpha : \alpha < \lambda].$$

< ロ > < 同 > < 臣 > < 臣 > -

SQR

э

Let λ be terminally admissible. Let

$$R_0 = \mathbb{Q}[X_\alpha : \alpha < \lambda].$$

Let $m = \prod_{\alpha} X_{\alpha}^{e_{\alpha}} \in R_0$ be a monomial and

$$arphi_0(m) = \sum_lpha e_lpha \omega^lpha.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let λ be terminally admissible. Let

$$R_0 = \mathbb{Q}[X_\alpha : \alpha < \lambda].$$

Let $m = \prod_{\alpha} X_{\alpha}^{e_{\alpha}} \in R_0$ be a monomial and

$$arphi_0(m) = \sum_lpha e_lpha \omega^lpha.$$

If $p \in R_0$ is irreducible then we define

 $\varphi_0(p) = \max\{\varphi(m) : m \text{ appears in } p\}.$

Let λ be terminally admissible. Let

$$R_0 = \mathbb{Q}[X_\alpha : \alpha < \lambda].$$

Let $m = \prod_{lpha} X^{{\sf e}_{lpha}}_{lpha} \in R_0$ be a monomial and

$$arphi_0(m) = \sum_lpha e_lpha \omega^lpha.$$

If $p \in R_0$ is irreducible then we define

 $\varphi_0(p) = \max\{\varphi(m) : m \text{ appears in } p\}.$

If $p = \prod_i p_i \in R_0$ is a product of irreducibles p_i then

$$\varphi_0(p) = \sum_i \varphi_0(p_i),$$

 \sum denotes the *Hassenberg-Brookfield* (i.e. base- ω sum) of ordinals.

and

The problem with R_0 is that it is not a Euclidean ring w.r.t. φ_0 . Construct sequences

 $R_0 \subset R_1 \subset R_2 \subset \cdots$ $\varphi_0 \ge \varphi_1 \ge \varphi_2 \ge \cdots$ $R = \bigcup R_k, \quad \varphi = \lim_k \varphi_k.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

The problem with R_0 is that it is not a Euclidean ring w.r.t. φ_0 . Construct sequences

$$R_0 \subset R_1 \subset R_2 \subset \cdots$$
$$\varphi_0 \ge \varphi_1 \ge \varphi_2 \ge \cdots$$

and

$$R=\bigcup R_k, \quad \varphi=\lim_k \varphi_k.$$

 R_{k+1} is a localization of R_k . R is a localization of R_0 .

イロト イポト イヨト イヨト

= nar

Constructing $R_{k+1} \supset R_k$ and $\varphi_{k+1} \leq \varphi_k$

Given R_k, φ_k want to build R_{k+1}, φ_{k+1} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given R_k, φ_k want to build R_{k+1}, φ_{k+1} . Look for coprime pairs $p, q \in R_k$ s.t. $\varphi_k(p) \ge \varphi_k(q)$ but $\varphi_k(r = p - tq) \ge \varphi_k(q)$ -violating Euclidean condition.

イロト 人間ト イヨト イヨト

$$\varphi_{k+1}(p-X_{\beta}q)=\tau<\varphi_k(q).$$

Note that $p - X_{\beta}q$ is irreducible because (p, q) = 1 and X_{β} does not appear in either p or q.

イロト 人間ト イヨト イヨト

$$\varphi_{k+1}(p-X_{\beta}q) = \tau < \varphi_k(q).$$

Note that $p - X_{\beta}q$ is irreducible because (p, q) = 1 and X_{β} does not appear in either p or q.

Must choose τ VERY carefully. τ must satisfy finitely many "largeness conditions" described by p, q.

イロト 不得 トイヨト イヨト 二日

$$\varphi_{k+1}(p-X_{\beta}q) = \tau < \varphi_k(q).$$

Note that $p - X_{\beta}q$ is irreducible because (p, q) = 1 and X_{β} does not appear in either p or q.

Must choose τ VERY carefully. τ must satisfy finitely many "largeness conditions" described by p, q.

If $\tau = 0$ then we add $(p - X_{\beta}q)^{-1}$ to R_{k+1} (localize)-we must, according to Euclid.

$$\varphi_{k+1}(p-X_{\beta}q)=\tau < \varphi_k(q).$$

Note that $p - X_{\beta}q$ is irreducible because (p, q) = 1 and X_{β} does not appear in either p or q.

Must choose τ VERY carefully. τ must satisfy finitely many "largeness conditions" described by p, q.

If $\tau = 0$ then we add $(p - X_{\beta}q)^{-1}$ to R_{k+1} (localize)-we *must*, according to Euclid.

This ends the (countable) construction. Set $R = \bigcup_{k=1}^{\infty} R_k$, $\varphi = \lim_{k \to \infty} \varphi_k$.

Lemma

R is a (transfinite) Euclidean domain.

< ロ > < 同 > < 臣 > < 臣 > -

E

Lemma

R is a (transfinite) Euclidean domain.

Lemma

Let ψ be the unique minimal Euclidean norm on R, then for each $x \in R$ we have that

$$\varphi(x)-\psi(x)<\infty.$$

Corollary

The range of ψ (above) is ω^{λ} (same as φ). Hence the Euclidean rank of R is ω^{λ} .

- 4 同 ト 4 回 ト 4

Conjecture

MTEF implies Π_1^1 -CA over RCA.

・ロット 4 日マ 4 田マ 4

문 🕨 🗉 문

Thank You!

・ロ・・部・・ボ・・

Ð.