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Euclidean Number Theory

Division Algorithm for N
For every 0 6= d ∈ N and every x ∈ N there exist numbers q, r ∈ N
such that 0 ≤ r < d and

x = qd + r .

Euclidean Algorithm for N
Every pair of numbers a, b ∈ N has a greatest common divisor.
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Euclidean Domains

Definition

Let R be a ring and ϕ : R → N a function. We say that the pair
(R, ϕ) is a Euclidean ring with Euclidean norm ϕ if for every
x , d ∈ R, d 6= 0, there exist q, r ∈ R such that 0 ≤ ϕ(r) < ϕ(d)
and

x = qd + r .

Definition

A Euclidean domain is an integral domain that is a Euclidean ring.

Generalized Euclidean Algorithm

If R is a Euclidean domain then R is a principal ideal domain.

Example

1 Z, ϕ = | · |;
2 G = {a + bi : a, b ∈ Z}, ϕ = | · |C.
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Transfinite Euclidean Rings

Definition

Let R be a ring, α be an ordinal, and ϕ : R → α. We say that the
pair (R, ϕ) is a Transfinite Euclidean ring with
(Transfinite) Euclidean norm ϕ if for every x , d ∈ R, d 6= 0, there
exist q, r ∈ R such that 0 ≤ ϕ(r) < ϕ(d) and

x = qd + r .

Theorem

Every transfinite Euclidean ring is a principal ideal domain.
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Transfinite Euclidean Rank

Definition

Let R be a transfinite Euclidean ring. The Euclidean rank of R is
the least ordinal α such that (R, ϕ) is a transfinite Euclidean ring
and α is the range of ϕ.

Fact

Let R be a Euclidean ring. Then the pointwise minimum of all
Euclidean functions on R is a Euclidean function on R.

Fact

There are noncommutative transfinite Euclidean rings of arbitrarily
large ordinal ranks.
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A Question

Question (Motzkin 1949, Samuel 1971)

Is there a properly Transfinite Euclidean Domain? In other words,
is there a Euclidean Domain R with Euclidean Rank > ω?

Theorem (Hiblot and Nagata, 1975-77)

There is a Properly Transfinite Euclidean Domain of rank ≤ ω2.

Limited technique.
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A More Genreal Question

Question (Conidis, 2012)

What is the Reverse Mathematical strength of the statement
(MTEF) that says “Every transfinite Euclidean ring has a minimal
Transfinite Euclidean Function”?
Is there a largest possible Transfinite Euclidean Rank for all
Euclidean Domains? (This generalizes Motzkin, Samuel above)

Definition

An ordinal is terminally-admissible whenever it has the same
cardinality as all of its tail subsets. Think countable limit ordinals
and cardinals.

Theorem (Conidis, 2013)

If α is terminally-admissible then ωα is the Euclidean rank of a
transfinite Euclidean domain. In particular every cardinal is the
Euclidean rank of a transfinite Euclidean domain.

Chris Conidis Higher Euclidean Rings



A More Genreal Question

Question (Conidis, 2012)

What is the Reverse Mathematical strength of the statement
(MTEF) that says “Every transfinite Euclidean ring has a minimal
Transfinite Euclidean Function”?
Is there a largest possible Transfinite Euclidean Rank for all
Euclidean Domains? (This generalizes Motzkin, Samuel above)

Definition

An ordinal is terminally-admissible whenever it has the same
cardinality as all of its tail subsets. Think countable limit ordinals
and cardinals.

Theorem (Conidis, 2013)

If α is terminally-admissible then ωα is the Euclidean rank of a
transfinite Euclidean domain. In particular every cardinal is the
Euclidean rank of a transfinite Euclidean domain.

Chris Conidis Higher Euclidean Rings



A More Genreal Question

Question (Conidis, 2012)

What is the Reverse Mathematical strength of the statement
(MTEF) that says “Every transfinite Euclidean ring has a minimal
Transfinite Euclidean Function”?
Is there a largest possible Transfinite Euclidean Rank for all
Euclidean Domains? (This generalizes Motzkin, Samuel above)

Definition

An ordinal is terminally-admissible whenever it has the same
cardinality as all of its tail subsets. Think countable limit ordinals
and cardinals.

Theorem (Conidis, 2013)

If α is terminally-admissible then ωα is the Euclidean rank of a
transfinite Euclidean domain. In particular every cardinal is the
Euclidean rank of a transfinite Euclidean domain.

Chris Conidis Higher Euclidean Rings



A Brief Overview of the Construction (Stage s = 0)

Let λ be terminally admissible. Let

R0 = Q[Xα : α < λ].

Let m =
∏

α X eα
α ∈ R0 be a monomial and

ϕ0(m) =
∑
α

eαω
α.

If p ∈ R0 is irreducible then we define

ϕ0(p) = max{ϕ(m) : m appears in p}.

If p =
∏

i pi ∈ R0 is a product of irreducibles pi then

ϕ0(p) =
∑
i

ϕ0(pi ),

∑
denotes the Hassenberg-Brookfield (i.e. base-ω sum) of ordinals.
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Transfinite Euclidean Construction

The problem with R0 is that it is not a Euclidean ring w.r.t. ϕ0.
Construct sequences

R0 ⊂ R1 ⊂ R2 ⊂ · · ·

ϕ0 ≥ ϕ1 ≥ ϕ2 ≥ · · ·

and
R =

⋃
Rk , ϕ = lim

k
ϕk .

Rk+1 is a localization of Rk . R is a localization of R0.
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Constructing Rk+1 ⊃ Rk and ϕk+1 ≤ ϕk

Given Rk , ϕk want to build Rk+1, ϕk+1.

Look for coprime pairs p, q ∈ Rk s.t. ϕk(p) ≥ ϕk(q) but
ϕk(r = p − tq) ≥ ϕk(q)–violating Euclidean condition.
Choose ordinal β large not appearing in p,q and define

ϕk+1(p − Xβq) = τ < ϕk(q).

Note that p − Xβq is irreducible because (p, q) = 1 and Xβ does
not appear in either p or q.
Must choose τ VERY carefully. τ must satisfy finitely many
“largeness conditions” described by p, q.
If τ = 0 then we add (p − Xβq)−1 to Rk+1 (localize)–we must,
according to Euclid.
This ends the (countable) construction. Set R = ∪∞k=1Rk ,
ϕ = limk→∞ ϕk .
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Verification

Lemma

R is a (transfinite) Euclidean domain.

Lemma

Let ψ be the unique minimal Euclidean norm on R, then for each
x ∈ R we have that

ϕ(x)− ψ(x) <∞.

Corollary

The range of ψ (above) is ωλ (same as ϕ). Hence the Euclidean
rank of R is ωλ.
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Conjecture

MTEF implies Π1
1-CA over RCA.
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Thank You!
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