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Dual Ramsey's theorem.

The dual Ramsey's theorem is a variant of the well-known Ramsey's theorem.

For k ≤ ω, let [ω]k denote the set of all subsets of ω of size k.

Ramsey's theorem for k, ℓ < ω (RTkℓ).
If [ω]k =

∪
i<ℓ Ci, there is H ∈ [ω]ω such that [H]k ⊆ Ci for some i.

For k ≤ ω, let (ω)k denote the set of all partitions of ω into k parts.

Given x ∈ (ω)ω and k < ω, let (x)k be the set of all coarsenings y ∈ (ω)k of x.

Dual Ramsey's theorem for k, ℓ < ω (DRTkℓ).
If (ω)k =

∪
i<ℓ Ci is Borel, there is x ∈ (ω)ω such that (x)k ⊆ Ci for some i.



A short history.

Introduced and proved by Carlson and Simpson (1984). Extended by
Prömel and Voigt (1985) to colorings with the Baire property.

Miller and Solomon (2004) showed RCA0 ⊢ Open-DRTk+1ℓ → RTkℓ.

Blass, Hirst, and Simpson (1987),Miller and Solomon, and Erhard (2013) all
studied the Carlson-Simpson lemma (CSL), the combinatorial core of DRT.

Blass, Hirst, and Simpson (1987) showed Π1
2-CA0 ⊢ CSL. Slaman (unpublished)

improved this to Π1
1-CA0 ⊢ CSL. It is unknown whether RCA0 ⊢ CSL22.

Miller and Solomon (2004) showed WKL0 ⊬ VW2
2. Erhard (2013) showed that

COH ⊬ VW2
2 and SRT22 ⊬ OVW2

2.

All of this deals essentially only with open colorings.



Combinatorial principles.

Definition. A coloring (ω)k =
∪

i<ℓ Ci is reduced if the color of x ∈ (ω)k
depends only on the least element a of the kth block of x and which blocks the
numbers b < a belong to.

Carlson-Simpson lemma (CSLkℓ).
If (ω)k =

∪
i<ℓ Ci is reduced, there is x ∈ (ω)ω and i < ℓ such if y ∈ (x)k

keeps the first k− 1 blocks of x distinct then y ∈ Ci.

Note that every reduced coloring is open.

The following natural variant the CSL is proved by ω · k many iterations of CSL.

Combinatorial dual Ramsey's theorem (CDRTkℓ).
If (ω)k =

∪
i<ℓ Ci is reduced, there is x ∈ (ω)ω and i < ℓ such that (x)k ⊆ Ci.



The Baire DRT.

We code a Baire ℓ-coloring by open sets O0, . . . ,Oℓ−1 and a sequence of
dense open sets {Dn}n∈ω, representing that Oi ∩

∩
n Dn ⊆ Ci for all i.

This allows us to formulate Baire-DRTkℓ in second-order arithmetic.

Theorem (Dzhafarov, Flood, Solomon, and Westrick).
Over RCA0, the following are equivalent for all k, l < ω:

1. Open-DRTkℓ;

2. Baire-DRTkℓ;

3. CDRTkℓ.

In particular, we obtain bounds for CDRT that we lack for CSL.



Relationships.
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Folklore. ACA+0 → Hindman's theorem→ CDRT3ℓ .

The implication CDRT4ℓ → ACA0 follows by results of Miller and Solomon.



The Borel DRT.

Theorem (Dzhafarov, Flood, Solomon, and Westrick).
Over RCA0, the following are equivalent for all k, ℓ < ω:

1. Borel-DRTkℓ;

2. Baire-DRTkℓ + ATR0.

The implication from Borel-DRT to Baire-DRT is a coding argument.

That Borel-DRT implies ATR0 is not for any deep reason; the statement that for
every Borel set, there a point in it or not in it, already implies ATR0.

The implication from 2 to 1 uses ATR0 to formalize that every Borel set is Baire.

Since Baire-DRT↔ CDRT, it follows that the strength of (Borel) DRT can be
understood entirely in combinatorial terms.



Effective analysis, k ≥ 3.

Throughout, fix k ≥ 3.

Recall that a modulus is a function f such that if f ≤ g then f ≤T g.

Lemma. Let f be a modulus. There is an f-computable clopen coloring
(ω)k = C0 ∪ C1 such that f ≤T x for each homogeneous x ∈ (ω)ω .

Lemma. If a ∈ O and (ω)k = C0 ∪ C1 where the Ci are Ha-computable and
clopen, then the Ci have computable codes as topologically ∆0

a sets.

Theorem (Dzhafarov, Flood, Solomon, and Westrick).
For each computable ordinal α there is a computable, topologically ∆0

α+1

coloring (ω)k = C0 ∪C1 such that ∅(α) ≤T x for each homogeneous x ∈ (ω)ω.

Every hyperarithmetic set A has a self-modulus, i.e., a modulus f ≡T A.



Effective analysis, k = 2.

Though Borel-DRT2ℓ → ATR0, we lack the ∅(α)-coding that we had for k ≥ 3.

For sufficiently nice colorings, there are more effective solutions.

Proposition (Dzhafarov, Flood, Solomon, and Westrick).
If (ω)2 = C0 ∪ C1 where C0 is effectively open, then there is a computable
x ∈ (ω)ω such that (x)2 ⊆ Ci for some i.

This extends a result of Katz (unpublished), who established the same for
C0 effectively clopen. Our proof is necessarily non-uniform.

Theorem (Dzhafarov, Flood, Solomon, and Westrick).
If (ω)2 = C0 ∪ C1 where C0 is effectively Σ0

2, then there is either a computable
x ∈ (ω)ω with (x)2 ⊆ C1, or a ∅′-computable x ∈ (ω)ω with (x)2 ⊆ C0.



Simple colorings.

A coloring ω2 = C0 ∪ C1 is simple if the color of x ∈ (ω)2 depends only on the
least element of the non-zero block.

Let ∆0
n-D

2
2 be the statement that given c : [ω]n → 2 such that

limsn−2 · · · lims0 c(k, s0, . . . , sn−2) exists for all k, there is an i and an infinite set
L such that limsn−2 · · · lims0 c(k, s0, . . . , sn−2) = i for all k ∈ L.

So ∆0
2-D

2
2 is the well-known D2

2, which is equivalent to SRT22 over RCA0.

Proposition (Dzhafarov, Flood, Solomon, and Westrick).
Over RCA0, the following are equivalent:

1. Simple-DRT22 for effectively Σ
0
n colorings;

2. ∆0
n-SRT

2
2.



Summary.
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Questions.

1. What is the strength of CDRTkℓ?

2. Is CDRT strictly stronger than CSL?



Thank you for your attention.


