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Dual Ramsey's theorem.

The dual Ramsey's theorem is a variant of the well-known Ramsey's theorem.
For k < w, let [w]* denote the set of all subsets of w of size k.

Ramsey's theorem for k, £ < w (RT'E).
If [w]* = Ui, Civ there is H € [w]® such that [H]* C C; for some i.

For k < w, let (w)* denote the set of all partitions of w into k parts.
Given x € (w)“ and k < w, let (x)* be the set of all coarsenings y € (w) of x.

Dual Ramsey's theorem for k, £ < w (DRT'Z).
If (w)* = Ui, Ci is Borel, there is x € (w)® such that (x)* C C; for some i.



A short history.

Introduced and proved by Carlson and Simpson (1984). Extended by
Promel and Voigt (1985) to colorings with the Baire property.

Miller and Solomon (2004) showed RCAq Open—DRT’é"‘1 — RT'E.

Blass, Hirst, and Simpson (1987), Miller and Solomon, and Erhard (2013) all
studied the Carlson-Simpson lemma (CSL), the combinatorial core of DRT.

Blass, Hirst, and Simpson (1987) showed I_Ig—CAO F CSL. Slaman (unpublished)
improved this to M]-CAg = CSL. It is unknown whether RCAg = CSL3.

Miller and Solomon (2004) showed WKLg ¥ VW% Erhard (2013) showed that
COH ¥ VW3 and SRT3 ¥ OVW3.

All of this deals essentially only with open colorings.



Combinatorial principles.

Definition. A coloring (w)* = (J,, C; is reduced if the color of x € (w)*
depends only on the least element a of the kth block of x and which blocks the
numbers b < a belong to.

Carlson-Simpson lemma (CSL’E).

If (w)* = Ui, Ci is reduced, there is x € (w)* and i < £such ify € (x)*
keeps the first k — 1 blocks of x distinct then y € C;.

Note that every reduced coloring is open.

The following natural variant the CSL is proved by w - k many iterations of CSL.

Combinatorial dual Ramsey's theorem (CDRT’E).
If (w)* = Ui, Ci is reduced, there is x € (w)“ and i < £ such that (x) C C..



The Baire DRT.

We code a Baire £-coloring by open sets Oy, . . ., Oy—1 and a sequence of
dense open sets { Dy} new, representing that O; N (), D, € C; for all i.

This allows us to formulate Baire—DRT'g in second-order arithmetic.

Theorem (Dzhafarov, Flood, Solomon, and Westrick).
Over RCAy, the following are equivalent for all k, | < w:
1. Open-DRTj;

2. Baire-DRT;

3. CDRT;.

In particular, we obtain bounds for CDRT that we lack for CSL.



Relationships.

ACAS CDRT;

=y

ACAq CDRT;

S~

RT3

|

RCAo > CDRT}

Folklore. ACASL — Hindman's theorem — CDRTZ’.

The implication CDRTZ} — ACA follows by results of Miller and Solomon.



The Borel DRT.

Theorem (Dzhafarov, Flood, Solomon, and Westrick).
Over RCAy, the following are equivalent for all k, £ < w:

1. Borel-DRTS;
2. Baire-DRTj 4 ATRy.

The implication from Borel-DRT to Baire-DRT is a coding argument.

That Borel-DRT implies ATRg is not for any deep reason; the statement that for
every Borel set, there a point in it or not in it, already implies ATRy.

The implication from 2 to 1 uses ATRp to formalize that every Borel set is Baire.

Since Baire-DRT <+ CDRYT, it follows that the strength of (Borel) DRT can be
understood entirely in combinatorial terms.



Effective analysis, k > 3.

Throughout, fix k > 3.
Recall that a modulus is a function fsuch that if f < gthen f <7 g.

Lemma. Let fbe a modulus. There is an f-computable clopen coloring
(w)k = Co U C; such that f <1 x for each homogeneous x € (w)®.

Lemma. If a € O and (w)* = Cy U C; where the C; are H,-computable and
clopen, then the C; have computable codes as topologically A? sets.

Theorem (Dzhafarov, Flood, Solomon, and Westrick).
For each computable ordinal o there is a computable, topologically Aa_H
coloring (w)k = Co U C; such that B(®) <7 xfor each homogeneous x € (w)¥.

Every hyperarithmetic set A has a self-modulus, i.e., a modulus f =1 A.



Effective analysis, k = 2.

Though BoreI-DRT% — ATRy, we lack the (Z)(o‘)-coding that we had for k > 3.
For sufficiently nice colorings, there are more effective solutions.

Proposition (Dzhafarov, Flood, Solomon, and Westrick).
If (w)? = Co U C;y where Cy is effectively open, then there is a computable
x € (w)¥ such that (x)? C C; for some .

This extends a result of Katz (unpublished), who established the same for
Co effectively clopen. Our proof is necessarily non-uniform.

Theorem (Dzhafarov, Flood, Solomon, and Westrick).
If (w)? = Cy U Cy where Cy is effectively ¥9, then there is either a computable
x € (w)¥ with (x)? C C;, or a (-computable x € (w)¥ with (x)? C Cp.



Simple colorings.

A coloring w? = Co U Cy is simple if the color of x € (w)? depends only on the
least element of the non-zero block.

Let A%-D? be the statement that given ¢ : [w]” — 2 such that
limsg, , -+ - limg, c(k, sg, . .., sp—2) exists for all k, there is an i and an infinite set
Lsuch that limg, , - - - limg, c(k, so, . . ., sp—2) = iforall k € L.

So A9-D3 is the well-known D3, which is equivalent to SRT3 over RCAy.

Proposition (Dzhafarov, Flood, Solomon, and Westrick).
Over RCAy, the following are equivalent:

1. Simple-DRT? for effectively 30 colorings;
2. A-SRTZ.
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Questions.

1. What is the strength of CDRT’E?

2. |s CDRT strictly stronger than CSL?



Thank you for your attention.



