AMS Meeting, Loyola University, Chicago, October 3-4, 2015 Special Session on Computability Theory and Applications Computable Categoricity and Scott Families Valentina Harizanov Department of Mathematics George Washington University harizanv@gwu.edu

Latest results joint with E. Fokina and D. Turetsky.

Computable and Relative Computable Categoricity

Let A be a *computable* structure.

- A is computably categorical if for all computable $B \cong A$, there is a computable isomorphism f from A onto B.
- A is relatively computably categorical if for all B ≅ A, there is an isomorphism f from A onto B, which is computable relative to the atomic diagram of B.
- A is relatively computably categorical $\Rightarrow A$ is computably categorical

- $(\mathbb{Q}, <)$ is computably categorical.
- $(\omega, <)$ is not computably categorical.
- A computable random graph is computably categorical.
- (R. Miller 2005) No computable tree (*T*, ≺) of infinite height is computably categorical.
- The field \mathbb{Q} is computably categorical.
- (R. Miller-Shoutens 2013; Kudinov-Lvov)
 There is a computable computably categorical field of *infinite* transcendence degree.

Syntactic Approach to Categoricity

Let A be a *countable* structure.

- A Scott family for A is a set Φ of L_{ω1}ω formulas, with a fixed finite tuple of parameters c̄ in A, such that:
- 1. Each tuple \overline{a} in A satisfies some $\psi(\overline{c}, \overline{x}) \in \Phi$, and
- 2. If \overline{a} , \overline{b} are tuples in A (of the same length) satisfying the same formula $\psi(\overline{c}, \overline{x}) \in \Phi$, then there is an *automorphism* of A taking \overline{a} to \overline{b} .

• (Goncharov 1975)

A computable structure A is relatively computably categorical *iff* A has a c.e. Scott family of (finitary) existential formulas *iff* A has a c.e. Scott family of computable Σ_1 formulas.

Computable Σ_1 formula: $\bigvee_{i \in I} \exists \overline{u_i} \theta_i(\overline{x}, \overline{u_i})$, I is c.e. and θ_i 's are quantifier-free.

• (Ash-Knight-Manasse-Slaman 1989, Chisholm 1990)

A computable structure A is relatively Δ_{α}^{0} -categorical *iff* A has a Σ_{α}^{0} Scott family of computable Σ_{α} formulas *iff* A has a c.e. Scott family of computable Σ_{α} formulas. Structures Computably Categorical but Not Relatively

• (Goncharov 1977)

There is a computable structure (in fact, a rigid graph) that is computably categorical, but *not* relatively computably categorical.

- (Hirschfeldt-Khoussainov-Shore-Slinko 2002) There are computable computably categorical, but not relatively computably categorical: partial orders, lattices, 2-step nilpotent groups, commutative semigroups, integral domains.
- (Hirschfeldt-Kramer-Miller-Shlapentokh 2015)
 There is a computable computably categorical algebraic field, which is *not* relatively computably categorical.

Computable Categoricity \Rightarrow *Relative Computable Categoricity*

- (Goncharov-Dzgoev 1980, Remmel 1981)
 A computable linear ordering A is computably categorical *iff* A has only finitely many successor pairs *iff* A is relatively computably categorical.
- (LaRoche 1977, Goncharov-Dzgoev 1980, Remmel 1981)
 A computable Boolean algebra B is computably categorical *iff* B has finitely many atoms *iff* B is relatively computably categorical.

• (Miller-Shlapentokh 2015)

A computable algebraic field F with a splitting algorithm is computably categorical *iff* the *orbit relation*, $\{(a,b) \in F^2 : (\exists h \in Aut(F))[h(a) = b]\}$, is computable *iff* F is relatively computably categorical.

• F has a *splitting algorithm* if it is decidable which polynomials in F[x] are irreducible.

- (Goncharov 1980, Smith 1981)
 A computable Abelian p-group G is computably categorical *iff* G is isomorphic to:
 (1) ⊕ Z(p[∞]) ⊕ F, where α ≤ ω and F is finite, or
 - (2) $\bigoplus_{n} \mathbb{Z}(p^{\infty}) \oplus F \oplus \bigoplus_{\omega} \mathbb{Z}(p^{k})$, where $n, k \in \omega$ and F is finite *iff* G is relatively computably categorical.
- (Calvert-Cenzer-Harizanov-Morozov 2006) A computable equivalence structure A = (D, E) is computably categorical *iff* either
 (1) A finitely many finite equivalence classes, or
 (2) A has finitely many infinite classes, a finite bound on the size of finite classes, and exactly one finite k with infinitely many classes of size k. *iff* A is relatively computably categorical.

- (Lempp-McCoy-Miller-Solomon 2005)
 Every computable computably categorical tree of finite height is relatively computably categorical.
- An injection structure A = (D, f), where f : D → D is a 1-1 function.
 For a ∈ D, the orbit of a is:

$$\mathcal{O}_f(a) = \{ b \in D : (\exists n \in \omega) [f^n(a) = b \lor f^n(b) = a] \}$$

(Cenzer-Harizanov-Remmel 2014)
 A computable injection structure A is computably categorical *iff* A has finitely many infinite orbits *iff* A is relatively computably categorical.

Extra Decidability and Categoricity

• (Goncharov 1975)

Assume that A is 2-*decidable*. If A is computably categorical, then A is relatively computably categorical.

A is *n*-decidable if Σ_n^0 elementary diagram of A is computable.

• (Ash 1987)

Let $\alpha > 1$ be a computable ordinal. Under some additional decidability on A, if A is Δ^0_{α} -categorical, then A is relatively Δ^0_{α} -categorical.

• (Kudinov 1996)

There is a 1-*decidable* structure that is computably categorical, but *not* relatively computably categorical.

- (Cholak-Goncharov-Khoussainov-Shore 1999)
 There is a computable computably categorical structure A such that for every a ∈ A, the expanded structure (A, a) is not computably categorical.
- (T. Millar 1986)

If a computably categorical structure A is 1-decidable, then any expansion of A by finitely many constants remains computably categorical.

• (Downey-Kach-Lempp-Turetsky 2013) Any 1-decidable computably categorical structure is relatively Δ_2^0 -categorical.

Fraïssé limits

- The *age* of a structure A is the class of all finitely generated structures that can be embedded in A.
- A structure A is *ultrahomogeneous* if every isomorphism between finitely generated substructures of A extends to an automorphism of A.
- (Fraïssé) Fraïssé limit of a class of finitely generated structures is unique up to isomorphism.

- (Fokina-Harizanov-Turetsky 2015)
 There is a 1-decidable structure F that is a Fraïssé limit and is computably categorical, but not relatively computably categorical.
 Moreover, the language for such F can be finite or relational.
- Let A be a computable structure which is a Fraïssé limit. Then A is relatively Δ⁰₂-categorical.
- If the language of a Fraïssé limit A is finite and relational, then A is relatively computably categorical.

Non-Relatively Δ^0_{α} -Categorical Structures

- (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon 2005)
 For every computable successor ordinal α = β + 1, there is a computable structure that is Δ⁰_α-categorical, but not relatively Δ⁰_α-categorical.
- (Chisholm-Fokina-Goncharov-Harizanov-Knight-Quinn 2009)
 For every computable *limit* ordinal α, there is a computable structure that is Δ⁰_α-categorical, but *not* relatively Δ⁰_α-categorical.
- (Downey-Kach-Lempp-Lewis-Montalbán-Turetsky 2015)
 For every computable ordinal α, there is a computably categorical structure that is *not* relatively Δ⁰_α-categorical.

 Δ_2^0 -Categoricity of Structures from Natural Classes

• (McCoy 2003)

A computable Boolean algebra \mathcal{B} is *relatively* Δ_2^0 -*categorical iff* \mathcal{B} can be expressed as a finite direct sum of subalgebras

$$\mathcal{C}_0 \oplus \cdots \oplus \mathcal{C}_k$$

where each \mathcal{C}_k is either atomless, an atom, or a 1-atom.

(Bazhenov 2014; Harris)
 Every computable Δ⁰₂-categorical Boolean algebra is relatively Δ⁰₂-categorical.

- (Cenzer-Harizanov-Remmel 2014)
 A computable injection structure A is Δ⁰₂-categorical *iff* A has finitely many orbits of type ω or finitely many orbits of type Z *iff* A is relatively Δ⁰₂-categorical.
- (Calvert-Cenzer-Harizanov-Morozov 2006)
 A computable equivalence structure A is relatively Δ⁰₂-categorical *iff*:
 (1) A has finitely many infinite equivalence classes, or
 (2) A has a finite bound on the size of finite equivalence classes.
- (Kach-Turetsky 2009)

There is a computable Δ_2^0 -categorical equivalence structure M, which is *not* relatively Δ_2^0 -categorical.

- (Fokina-Harizanov-Turetsky 2015)
 There is a Δ⁰₂-categorical tree of finite (or infinite) height, which is not relatively Δ⁰₂-categorical.
- (Calvert-Cenzer-Harizanov-Morozov 2009) A computable Abelian *p*-group *G* is *relatively* Δ_2^0 -*categorical iff*

(1) G is isomorphic to $\bigoplus_{\alpha} \mathbb{Z}(p^{\infty}) \oplus H$, where $\alpha \leq \omega$ and H has finite period; or

(2) all elements in G are of finite height (equivalently, reduced with $\lambda(G) \leq \omega$).

 The *period* of a group H is max{o(h) : h ∈ H} if finite, and ∞ otherwise.

- (Fokina-Harizanov-Turetsky 2015) There is a computable Δ⁰₂-categorical Abelian *p*-group *G*, which is *not* relatively Δ⁰₂-categorical.
- A homogenous, completely decomposable, abelian group is a group of the form ⊕_{i∈I} H, where H is a subgroup of (Q, +). Let H be the class of such groups.
- $G \in \mathcal{H}$ is (relatively) computably categorical *iff* G is of finite rank.
- For P, a set of primes, $Q^{(P)}$ is the subgroup $(\mathbb{Q}, +)$ generated by $\{\frac{1}{p^k} : p \in P \land k \in \omega\}.$

• (Downey-Melnikov 2014)

Let a computable $G \in \mathcal{H}$ be of infinite rank. Then G is Δ_2^0 -categorical *iff* G is isomorphic to $\bigoplus_{\omega} Q^{(P)}$, where P is c.e. and the set (Primes -P) is semi-low.

- A set $S \subseteq \omega$ is *semi-low* if the set $H_S = \{e : W_e \cap S \neq \emptyset\}$ is computable from \emptyset' .
- (Fokina-Harizanov-Turetsky 2015)
 (i) A computable G ∈ H of infinite rank is relatively Δ⁰₂-categorical *iff* G is isomorphic to ⊕_ω Q^(P) where P is a *computable* set of primes.

(ii) There is a computable $G \in \mathcal{H}$, which is Δ_2^0 -categorical, but not relatively Δ_2^0 -categorical.

• (McCoy 2003)

A computable linear order A is relatively Δ_2^0 -categorical *iff* A is a sum of finitely many intervals, each of type

$$m, \omega, \omega^*, \mathbb{Z}, \text{ or } n \cdot \eta,$$

so that each interval of type $n \cdot \eta$ has a supremum and an infimum.

- Open Problem: Is there is a computable Δ_2^0 -categorical linear order, which is not relatively Δ_2^0 -categorical?
- Open Problem: Is every Δ_1^1 -categorical structure relatively Δ_1^1 -categorical?

THANK YOU!