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Background

Definition (Schweber)
Let A and B be structures, potentially uncountable. Then
A ≤∗w B if, after a forcing collapse that causes A and B to both
become countable, every copy of B computes a copy of A.

Under reasonable hypotheses, this reducibility does not depend
on the forcing used.

This agrees with ≤w on countable structures

In practice, very little set theory is involved: most proofs can be
written by just imagining that A and B were countable, and
seeing what would happen.
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Our Structures

Rexp = (R,+, ·, <,exp)

R = (R,+, ·, <)

R+ = (R,+, <)

RQ = (R, constants “q ”(q∈Q), <)

B = (ωω, predicates“f (n) = m ”) ≡∗w (R, binary expansion)

W = (P(ω), predicates “n ∈ ”)

Observation (Knight, Montalban, Schweber; IKS)
W ≤∗w B ≤∗w RQ ≤∗w R+ ≤∗w R ≤∗w Rexp
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The Relations

Theorem (Igusa, Knight, Schwebber)
W <∗w B ≡∗w RQ ≡∗w R+ ≡∗w R ≡∗w Rexp

Theorem (Downey, Greenberg, Miller)
W <∗w B ≡∗w R+ ≡∗w R
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W <∗w R Igusa, Knight

Every countable Scott set S has a real closed field
realizing exactly the types in S that is equicomputable with
S. (Macintyre and Marker)
if S isW, then this real closed field, R̃, is a recursively
saturated extension of R, so R is the residue field of R̃

Theorem (Igusa, Knight)
Let K be a countable recursively saturated real closed field with
residue field k. Then k �w K .
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Proof Ingredients

Effective structure theory!
A property is computable Σ2 definable in a structure if and
only if it is Σ0

2 in every copy of the structure.
(Ash, Knight, Manasse, Slaman)

If k ≤w K , then FT (K ), the set of finite elements of K in
transcendental Dedekind cuts, is computable Σ2 definable
in K .
(A direct 0′-style construction)

If K is recursively saturated, then FT (K ) is not computable
Σ2 definable in K .
(Next Slide)
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Proving that FT (K ) is not computable Σ2 definable in K :

If FT (K ) were definable via a ∃∀− formula, then each ∀−
part would have to omit all algebraic Dedekind cuts.
Recursive saturation + compactness of first order logic
means that it must omit a neighborhood of that cut, and
that it must do so at a finite stage.
We then dive into that neighborhood, but not that cut,
dodging both the ∀− formula and the algebraic cut.
We then repeat this infinitely many times to produce a
transcendental element that does not satisfy any of the ∀−
formulas.
Recursive saturation guarantees that this element exists in
K .
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W <∗w R Downey, Greenberg, Miller

Theorem (DGM)
If I is a countable Scott ideal, then to list all the functions in I,
you must be able to compute a function dominating all of them,
but you can list all the sets in I without doing so.

(A forcing proof.)

Theorem (DGM)
If I is a countable Scott ideal, then from a list of all the functions
in I, you can compute the field of reals whose Turing degrees
are in I.

(Uses quantifier elimination and decidability of Th(RCF ).)

(Note, in both of these, I is the set of all Turing degrees inW or
equivalently B.)
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RQ ≡∗w Rexp Igusa, Knight, Schwebber

Properties from RQ:

Ability to code Th(R,+, ·,exp) using a parameter.
Ability to code infinite paths through a tree in a Π0

1 manner.
Ability to code open rational boxes.
Ability to list all the reals, and compute which boxes they
are in.

Properties from Rexp:

o-minimal.
Any copy of RQ has a unique expansion to L(Rexp).

Theorem (Igusa, Knight, Schwebber)
RQ ≡∗w Rexp
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Choose a parameter coding Th(R,+, ·,exp).

Using this parameter, we find an algebraicity basis for Rexp
in RQ in a ∆0

2 way.

(Uses the fact that a tuple is algebraically independent if
and only if every formula that is true about it is true on a
rational box around it.)

Using Dedekind approximations to a basis, together with a
parameter for the theory, can build a copy of Rexp.

Add finite injury to the construction because we have a ∆0
2

approximation to the basis.
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Going Further

The function exp can be replaced by any other f such that Rf is
o-minimal.

Using restrictions to compact intervals, we can get any analytic
f . (van den Dries, Gabrielov)

Classically, f : R→ R is continuous if and only if f is
computable from a parameter.

In our context, this only shows that RQ ≡∗w RQ,f .

Question
Is R ≡∗w Rf for an arbitrary continuous f?

Gregory Igusa*, Julia Knight, Noah Schweber Computability strength of the field of real numbers



Going Further

The function exp can be replaced by any other f such that Rf is
o-minimal.

Using restrictions to compact intervals, we can get any analytic
f . (van den Dries, Gabrielov)

Classically, f : R→ R is continuous if and only if f is
computable from a parameter.

In our context, this only shows that RQ ≡∗w RQ,f .

Question
Is R ≡∗w Rf for an arbitrary continuous f?

Gregory Igusa*, Julia Knight, Noah Schweber Computability strength of the field of real numbers



Going Further

The function exp can be replaced by any other f such that Rf is
o-minimal.

Using restrictions to compact intervals, we can get any analytic
f . (van den Dries, Gabrielov)

Classically, f : R→ R is continuous if and only if f is
computable from a parameter.

In our context, this only shows that RQ ≡∗w RQ,f .

Question
Is R ≡∗w Rf for an arbitrary continuous f?

Gregory Igusa*, Julia Knight, Noah Schweber Computability strength of the field of real numbers



Going Further

The function exp can be replaced by any other f such that Rf is
o-minimal.

Using restrictions to compact intervals, we can get any analytic
f . (van den Dries, Gabrielov)

Classically, f : R→ R is continuous if and only if f is
computable from a parameter.

In our context, this only shows that RQ ≡∗w RQ,f .

Question
Is R ≡∗w Rf for an arbitrary continuous f?

Gregory Igusa*, Julia Knight, Noah Schweber Computability strength of the field of real numbers



Going Further

The function exp can be replaced by any other f such that Rf is
o-minimal.

Using restrictions to compact intervals, we can get any analytic
f . (van den Dries, Gabrielov)

Classically, f : R→ R is continuous if and only if f is
computable from a parameter.

In our context, this only shows that RQ ≡∗w RQ,f .

Question
Is R ≡∗w Rf for an arbitrary continuous f?

Gregory Igusa*, Julia Knight, Noah Schweber Computability strength of the field of real numbers



References

C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, “Generic
copies of countable structures”, Ann. Pure Appl. Logic, vol.
42(1989), pp. 195-205.

J. Chisholm, “Effective model theory vs. recursive model
theory”, J. Symb. Logic, vol. 55(1990), pp. 1168-1191.

R. Downey, N. Greenberg, J. S. Miller, “Generic Muchnik
reducibility and presentations of fields”, submitted.

G. Igusa and J. F. Knight, “Comparing two versions of the
reals”, submitted.

G. Igusa, J. F. Knight, and N. Schweber, “Comparing two
versions of the reals”, submitted.

Gregory Igusa*, Julia Knight, Noah Schweber Computability strength of the field of real numbers



References (cont.)

J. F. Knight, A. Montalbán, and N. Schweber, “Computing
strength of structures related to the field of real numbers”, in
preparation.

A. Macintyre, and D. Marker, “Degrees of recursively saturated
models”, Trans. of Amer. Math. Soc., vol. 282(1984), pp.
539-554.

L. van den Dries, “A generalization of the Tarski-Seidenberg
Theorem, and some non-definability results”, Bull. Amer. Math.
Soc., vol. 15(1986), pp. 189-193.

Gregory Igusa*, Julia Knight, Noah Schweber Computability strength of the field of real numbers



End

Thank you
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