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A brief introduction to K-triviality

We use K to denote prefix-free (Kolmogorov) complexity.

Definition
An infinite binary sequence A ∈ 2ω is K-trivial if

(∃c)(∀n) K(A �n) ≤ K(n) + c.

In other words, a K-trivial sequence has minimal initial segment
prefix-free complexity (up to a constant); its initial segments are no
more complex that those of the zero sequence.

Basic Facts

I Every computable sequence is K-trivial.

I [Chaitin 1970’s] Every K-trivial sequence is ≤T ∅′.
I [Solovay 1975] There is a non-computable K-trivial sequence.
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A brief introduction to K-triviality

The study of K-trivial sequences stalled until the early 2000’s, when
many equivalent characterizations were found.

Theorem (Nies 2005; Hirschfeldt, Nies, Stephan 2007)
Let A ∈ 2ω. The following are equivalent:

1. A is K-trivial: (∃c)(∀n) K(A �n) ≤ K(n) + c,

2. A is low for K: (∃c)(∀σ) KA(σ) ≥ K(σ)− c,
3. A is low for randomness: every ML-random sequence is

ML-random relative to A,

4. A is a base for randomness: there is an X ≥T A that is
ML-random relative to A.

I Each of these properties was introduced years before they were
all proved to be equivalent.

I Many other characterizations have now been given.
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A brief introduction to K-triviality

Along with these characterizations came a greater understanding of
the class of K-trivial sequences:

More Facts

I Every K-trivial sequence is low (i.e., A′ ≤T ∅′).
I The K-trivial sequences form an ideal in the Turing degrees:

they are closed downward under Turing reducibility and closed
under join.

I Each K-trivial sequence is computable from a K-trivial c.e. set.

More recent work on K-triviality has focused on the relationship
between the K-trivial sequences and the Martin-Löf random
sequences in the Turing degrees. In particular:

The ML-covering question (Stephan 2004)
If A is K-trivial, is there a ML-random X ≥T A such that X �T ∅′?
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ML-covering and variants

The ML-covering question (Stephan 2004)
If A is K-trivial, is there a ML-random X ≥T A such that X �T ∅′?

This was eventually answered in positively, and in fact, it was proved
that there is a Martin-Löf random X <T ∅′ that computes every
K-trivial sequence [Day, M. 2015] + [Bienvenu, Greenberg, Kučera, Nies, Turetsky 2015].

But consider another variant of the ML-covering question:

Question (M. and Nies 2006)
If A is K-trivial, is there a Martin-Löf random sequence X = X1 ⊕X2

such that A is computable from both X1 and X2?

I If X = X1 ⊕X2 is ML-random, then at least one of X1 and X2

fails to compute ∅′, so this question is a strengthening of the
ML-covering question.

I However, [Bienvenu, Greenberg, Kučera, Nies, Turetsky 2015]
answered this question negatively.
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1/2-bases

Definition
A sequence A ∈ 2ω is a 1/2-base if there is a ML-random sequence
X = X1 ⊕X2 such that A is computable from both X1 and X2.

Facts

I Every 1/2-base is K-trivial.

Proof.
Assume that A is computable from both halves of the ML-random
sequence X = X1 ⊕X2. Since X1 is ML-random relative to X2, it is
also ML-relative relative to A ≤T X2. Thus A ≤T X1 is a base for
randomness. Therefore, A is K-trivial.

I As was mentioned above, not every K-trivial is a 1/2-base.

I However, not all 1/2-bases are computable [Kučera 1986].

So the 1/2-bases form a proper subclass of the K-trivial sequences.
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1/2-bases

Let Ω be any left-c.e. ML-random (e.g., the halting probability of a
universal prefix-free machine).

Theorem (Greenberg, M., Nies)
Let A ∈ 2ω. The following are equivalent:

1. A is a 1/2-base,

2. A obeys the cost function c(m, s) =
√

Ωs − Ωm,

3. A is computable from both Ω1 and Ω2, where Ω = Ω1 ⊕ Ω2,

4. [with Turetsky] A is K-trivial and computable from Ω1.

I It follows that the 1/2-bases form an ideal. (The downward
closure was clear, but not the closure under join.)

I We also proved that each 1/2-base is computable from a c.e.
1/2-base.

I (1 ⇐⇒ 4) implies that Ω1 and Ω2 compute the same c.e. sets.
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Generalizing to k/n-bases

Definition
Let k < n. A sequence A ∈ 2ω is a k/n-base if there is a Martin-Löf
random sequence Z = Z1 ⊕ · · · ⊕ Zn such that A is computable from
the join of any k of the n parts of Z.

Theorem (Greenberg, M., Nies)
Let A ∈ 2ω. The following are equivalent:

1. A is a k/n-base,

2. A obeys c(m, s) = (Ωs − Ωm)
k/n

,

3. A is a k/n-base as witnessed by Ω,

4. [with Turetsky] A is K-trivial and computable from some k/n
part of Ω.

As before, the k/n-bases form an ideal in the Turing degrees that is
generated by its c.e. elements.
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A dense hierarchy of ideals

We now see that the 1/2-bases are the same as the 2/4-bases. (One
direction is not at all obvious from the definition!)

In general, we can talk of p-bases for p ∈ (0, 1) rational. Let Bp be the
ideal of p-bases.

Facts

I If q < p, then Bq ( Bp.

I There is a smart p-base, i.e., a p-base A such that every
ML-random that computes A computes every p-base.

I A smart p-base cannot be a q-base for any q < p, so⋃
q<p Bq ( Bp. It is also the case that Bp (

⋂
q>p Bq.

I
⋂

p>0 Bp is the ideal consisting of 1/ω-bases: A is a 1/ω-base if
there is a ML-random sequence Z = Z0 ⊕ Z1 ⊕ · · · such that
A ≤T Zi for every i ∈ ω. [Greenberg and Turetsky] This ideal is
also generated by its c.e. members.

We will discuss the ideal
⋃

p<1 Bp below.
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More generality, but no new ideals

Fact
Assume that A is a 3/6-base as witnessed by the ML-random
sequence Z = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4 ⊕ Z5 ⊕ Z6. In addition, assume that
A ≤T Z1 ⊕ Z2. Then A is a 3/7-base (as witnessed by a different
random sequence).

Furthermore, this is tight; if A is a 3/7-base, then there is such a Z.

I In general, arbitrary families of projections (along the coordinate
axes!) do not give us new subideals of the K-trivial sets.

I Proved using a generalization of the Loomis–Whitney inequality
from geometry. Gives an upper bound for the measure of a region
in terms of the measures of its projections.

I Using a linear program, we can find an optimal bound for a given
family of projections. This tells us for which p the family
characterizes the p-bases, as in the example above.
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Corollaries of the general result

Definition
Let k < n. A sequence A ∈ 2ω is a degenerate k/n-base if there is a
ML-random sequence Z witnessing that A is a k/n-base and such
that A is computable from the join of some k − 1 of the n parts of Z.

Degenerate k/n-bases are always p-bases for a smaller p:

Proposition

Let p = max

{
k

n+ 1
,
k − 1

n− 1

}
. A set is a degenerate k/n-base if and

only if it is a p-base.

Definition
Let k < n. A sequence A ∈ 2ω is a cyclic k/n-base if there is a
ML-random sequence Z such that A is computable from all n of the
“cyclic joins” of k of the n parts of Z.

Proposition. A set is a cyclic k/n-base if and only if it is a k/n-base.
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Robust computability

We finish by discussing another proper subclass of the K-trivials,
from work of Hirschfeldt, Jockusch, Kuyper, and Schupp.

Definitions

I X4Y = (X r Y ) ∪ (Y rX), i.e., the symmetric difference of the
sets X and Y .

I If lim
n→∞

|(X4Y ) ∩ {0, . . . , n− 1}|
n

= 0, then we say that Y is a

coarse description of X. In other words, Y is an imperfect copy
of X, where the imperfections have asymptotic density 0.

I A is robustly computable from X if A is computable from every
coarse description of X.

Theorem (Hirschfeldt, Jockusch, Kuyper, and Schupp)
If A is robustly computable from some ML-random sequence, then A
is K-trivial. In fact, A is an (n− 1)/n-base for some n.
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Robust computability

Theorem (Hirschfeldt, Jockusch, Kuyper, and Schupp)
There is a non-computable A that is robustly computable from Ω.
Not every K-trivial is robustly computable from some random.

So the sequences that are robustly computable from some random
form a proper subclass of the K-trivials (contained in

⋃
p<1 Bp).

Theorem (Greenberg, M., Nies)
Let A ∈ 2ω. The following are equivalent:

1. A is robustly computable from some ML-random sequence,

2. A is a p-base for some p < 1 (i.e., A ∈
⋃

p<1 Bp),

3. A is robustly computable from Ω.

So the sequences that are robustly computable from some random
form a proper subideal of the K-trivials, generated by its c.e. elements.
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Subideals of the K-trivial degrees
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Thank You!
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