Subclasses of the K-trivial degrees

Joseph S. Miller University of Wisconsin–Madison (Joint work with Noam Greenberg and André Nies)

Special Session on Computability Theory and Applications

Central Fall Sectional Meeting Loyola University Chicago Chicago, IL

October 3, 2015

A brief introduction to K-triviality

We use K to denote prefix-free (Kolmogorov) complexity.

Definition

An infinite binary sequence $A \in 2^{\omega}$ is *K*-trivial if

 $(\exists c)(\forall n) \; K(A \upharpoonright n) \leq K(n) + c.$

In other words, a K-trivial sequence has *minimal* initial segment prefix-free complexity (up to a constant); its initial segments are no more complex that those of the zero sequence.

Basic Facts

- Every computable sequence is K-trivial.
- ▶ [Chaitin 1970's] Every K-trivial sequence is $\leq_T \emptyset'$.
- \blacktriangleright [Solovay 1975] There is a non-computable K-trivial sequence.

A brief introduction to K-triviality

The study of K-trivial sequences stalled until the early 2000's, when many equivalent characterizations were found.

Theorem (Nies 2005; Hirschfeldt, Nies, Stephan 2007) Let $A \in 2^{\omega}$. The following are equivalent:

- 1. A is **K**-trivial: $(\exists c)(\forall n) K(A \upharpoonright n) \leq K(n) + c$,
- 2. A is low for K: $(\exists c)(\forall \sigma) K^A(\sigma) \ge K(\sigma) c$,
- 3. A is low for randomness: every ML-random sequence is ML-random relative to A,
- 4. A is a base for randomness: there is an $X \ge_T A$ that is ML-random relative to A.
- ► Each of these properties was introduced years before they were all proved to be equivalent.
- ▶ Many other characterizations have now been given.

A brief introduction to K-triviality

Along with these characterizations came a greater understanding of the class of K-trivial sequences:

More Facts

- Every K-trivial sequence is low (i.e., $A' \leq_T \emptyset'$).
- ▶ The K-trivial sequences form an ideal in the Turing degrees: they are closed downward under Turing reducibility and closed under join.
- ▶ Each K-trivial sequence is computable from a K-trivial c.e. set.

More recent work on K-triviality has focused on the relationship between the K-trivial sequences and the Martin-Löf random sequences in the Turing degrees. In particular:

The ML-covering question (Stephan 2004) If A is K-trivial, is there a ML-random $X \ge_T A$ such that $X \not\ge_T \emptyset'$?

ML-covering and variants

The ML-covering question (Stephan 2004) If A is K-trivial, is there a ML-random $X \ge_T A$ such that $X \not\ge_T \emptyset'$?

This was eventually answered in positively, and in fact, it was proved that there is a Martin-Löf random $X <_T \emptyset'$ that computes every K-trivial sequence [Day, M. 2015] + [Bienvenu, Greenberg, Kučera, Nies, Turetsky 2015].

But consider another variant of the ML-covering question:

Question (M. and Nies 2006)

If A is K-trivial, is there a Martin-Löf random sequence $X = X_1 \oplus X_2$ such that A is computable from both X_1 and X_2 ?

- ▶ If $X = X_1 \oplus X_2$ is ML-random, then at least one of X_1 and X_2 fails to compute \emptyset' , so this question is a strengthening of the ML-covering question.
- However, [Bienvenu, Greenberg, Kučera, Nies, Turetsky 2015] answered this question negatively.

1/2-bases

Definition

A sequence $A \in 2^{\omega}$ is a 1/2-base if there is a ML-random sequence $X = X_1 \oplus X_2$ such that A is computable from both X_1 and X_2 .

Facts

• Every 1/2-base is K-trivial.

Proof.

Assume that A is computable from both halves of the ML-random sequence $X = X_1 \oplus X_2$. Since X_1 is ML-random relative to X_2 , it is also ML-relative relative to $A \leq_T X_2$. Thus $A \leq_T X_1$ is a base for randomness. Therefore, A is K-trivial.

- ▶ As was mentioned above, not every K-trivial is a 1/2-base.
- ▶ However, not all 1/2-bases are computable [Kučera 1986].

So the 1/2-bases form a proper subclass of the K-trivial sequences.

1/2-bases

Let Ω be any left-c.e. ML-random (e.g., the halting probability of a universal prefix-free machine).

Theorem (Greenberg, M., Nies)

Let $A \in 2^{\omega}$. The following are equivalent:

- 1. A is a 1/2-base,
- 2. A obeys the cost function $\mathbf{c}(m,s) = \sqrt{\Omega_s \Omega_m}$,
- 3. A is computable from both Ω_1 and Ω_2 , where $\Omega = \Omega_1 \oplus \Omega_2$,
- 4. [with Turetsky] A is K-trivial and computable from Ω_1 .
- ▶ It follows that the 1/2-bases form an ideal. (The downward closure was clear, but not the closure under join.)
- ▶ We also proved that each 1/2-base is computable from a c.e. 1/2-base.
- $(1 \iff 4)$ implies that Ω_1 and Ω_2 compute the same c.e. sets.

Generalizing to k/n-bases

Definition

Let k < n. A sequence $A \in 2^{\omega}$ is a k/n-base if there is a Martin-Löf random sequence $Z = Z_1 \oplus \cdots \oplus Z_n$ such that A is computable from the join of any k of the n parts of Z.

Theorem (Greenberg, M., Nies)

Let $A \in 2^{\omega}$. The following are equivalent:

- 1. A is a k/n-base,
- 2. A obeys $\mathbf{c}(m,s) = (\Omega_s \Omega_m)^{k/n}$,
- 3. A is a k/n-base as witnessed by Ω ,
- 4. [with Turetsky] A is K-trivial and computable from some k/n part of Ω .

As before, the k/n-bases form an ideal in the Turing degrees that is generated by its c.e. elements.

A dense hierarchy of ideals

We now see that the 1/2-bases are the same as the 2/4-bases. (One direction is not at all obvious from the definition!)

In general, we can talk of *p*-bases for $p \in (0, 1)$ rational. Let \mathcal{B}_p be the ideal of *p*-bases.

Facts

- If q < p, then $\mathcal{B}_q \subsetneq \mathcal{B}_p$.
- ▶ There is a smart *p*-base, i.e., a *p*-base *A* such that every ML-random that computes *A* computes every *p*-base.
- ▶ A smart *p*-base cannot be a *q*-base for any q < p, so $\bigcup_{q < p} \mathcal{B}_q \subsetneq \mathcal{B}_p$. It is also the case that $\mathcal{B}_p \subsetneq \bigcap_{q > p} \mathcal{B}_q$.
- ▶ $\bigcap_{p>0} \mathcal{B}_p$ is the ideal consisting of $1/\omega$ -bases: A is a $1/\omega$ -base if there is a ML-random sequence $Z = Z_0 \oplus Z_1 \oplus \cdots$ such that $A \leq_T Z_i$ for every $i \in \omega$. [Greenberg and Turetsky] This ideal is also generated by its c.e. members.

We will discuss the ideal $\bigcup_{p<1} \mathcal{B}_p$ below.

More generality, but no new ideals

Fact

Assume that A is a 3/6-base as witnessed by the ML-random sequence $Z = Z_1 \oplus Z_2 \oplus Z_3 \oplus Z_4 \oplus Z_5 \oplus Z_6$. In addition, assume that $A \leq_T Z_1 \oplus Z_2$. Then A is a 3/7-base (as witnessed by a different random sequence).

Furthermore, this is tight; if A is a 3/7-base, then there is such a Z.

- ▶ In general, arbitrary families of projections (along the coordinate axes!) do not give us new subideals of the K-trivial sets.
- ▶ Proved using a generalization of the Loomis–Whitney inequality from geometry. Gives an upper bound for the measure of a region in terms of the measures of its projections.
- ▶ Using a linear program, we can find an optimal bound for a given family of projections. This tells us for which *p* the family characterizes the *p*-bases, as in the example above.

Corollaries of the general result

Definition

Let k < n. A sequence $A \in 2^{\omega}$ is a degenerate k/n-base if there is a ML-random sequence Z witnessing that A is a k/n-base and such that A is computable from the join of some k - 1 of the n parts of Z.

Degenerate k/n-bases are always p-bases for a smaller p:

Proposition

Let $p = \max\left\{\frac{k}{n+1}, \frac{k-1}{n-1}\right\}$. A set is a degenerate k/n-base if and only if it is a p-base.

Definition

Let k < n. A sequence $A \in 2^{\omega}$ is a cyclic k/n-base if there is a ML-random sequence Z such that A is computable from all n of the "cyclic joins" of k of the n parts of Z.

Proposition. A set is a cyclic k/n-base if and only if it is a k/n-base.

Robust computability

We finish by discussing another proper subclass of the K-trivials, from work of Hirschfeldt, Jockusch, Kuyper, and Schupp.

Definitions

- ► $X \triangle Y = (X \smallsetminus Y) \cup (Y \smallsetminus X)$, i.e., the symmetric difference of the sets X and Y.
- If $\lim_{n \to \infty} \frac{|(X \triangle Y) \cap \{0, \dots, n-1\}|}{n} = 0$, then we say that Y is a coarse description of X. In other words, Y is an imperfect copy of X, where the imperfections have asymptotic density 0.
- A is robustly computable from X if A is computable from every coarse description of X.

Theorem (Hirschfeldt, Jockusch, Kuyper, and Schupp) If A is robustly computable from some ML-random sequence, then A is K-trivial. In fact, A is an (n-1)/n-base for some n.

Theorem (Hirschfeldt, Jockusch, Kuyper, and Schupp)

There is a non-computable A that is robustly computable from Ω . Not every K-trivial is robustly computable from some random.

So the sequences that are robustly computable from some random form a *proper* subclass of the K-trivials (contained in $\bigcup_{p<1} \mathcal{B}_p$).

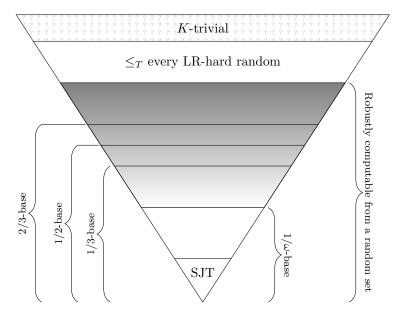
Theorem (Greenberg, M., Nies)

Let $A \in 2^{\omega}$. The following are equivalent:

- 1. A is robustly computable from some ML-random sequence,
- 2. A is a p-base for some p < 1 (i.e., $A \in \bigcup_{p < 1} \mathcal{B}_p)$,
- 3. A is robustly computable from Ω .

So the sequences that are robustly computable from some random form a proper subideal of the K-trivials, generated by its c.e. elements.

Subideals of the K-trivial degrees



14 / 15

Thank You!