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Medvedev reducibility

Definition. Let 4, B C w“. Then we say that A4 Medvedev reduces
to B (A4 <4, B) if there is a single Turing functional ® such that
d(B) C 4.




Medvedev reducibility
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Muchnik reducibility

Definition. Let 4, B C w“. Then we say that 4 Muchnik reduces to
B (A <,, B) if and only if for every g € B there exists f € 4 with
f ST 8.




Muchnik reducibility




Where uniformity fails

Theorem. (Kutera) Let n € w and let X be n-random. Then X
computes an n-DNC function.
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Theorem. (Kutera) Let n € w and let X be n-random. Then X
computes an n-DNC function.

Proposition. This does not hold uniformly.
Proof. Use the fact that the random reals are dense within 2%. O

Theorem. (Kautz) Every 2-random computes a function which is not
computably dominated.

Proposition. This does not hold uniformly.

Proof. Majority vote. O
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More failing uniformity

Theorem. (Jockusch) We have that DNC, <,, DNC3, but
DNC;, %4 DNCs.

Proof. A kind of majority vote.




Intermediate degree structures

Definition. Let 4, B C w®“ and let n € w. Then we say that 4
n-uniformly reduces to B (notation: 4 <, ‘B) if there exists a
sequence Vo, Vi, ... of uniformly N9 sets with B C J,., V; and a
uniformly computable sequence eg, €1, ... such that for every i € w
and every f € BNV; we have & (f) € 4.
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Intermediate degree structures

Definition. Let 4, B C w®“ and let n € w. Then we say that 4
n-uniformly reduces to B (notation: 4 <, ‘B) if there exists a
sequence Vo, Vi, ... of uniformly N9 sets with B C J,., V; and a
uniformly computable sequence eg, €1, ... such that for every i € w
and every f € BNV; we have & (f) € 4.

Note that <,, induces a degree structure MM, in the usual way, the
n(-uniform)-degrees.

For n =1, this structure was also studied by Higuchi and Kihara,
although in a different setting and with a different (but equivalent)
definition.
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Some elementary results

Proposition. Medvedev reducibility and O-reducibility coincide.
We will write <, for <,,.

Proposition. For every n € w U {oo}, M, is a distributive lattice. In
fact, it is even a Brouwer algebra: there is an operation —,, such that

AeC>,B<C>,4—,B.




Going back and forth

Proposition. Let n,m € wU {occ} with n < m. Then the natural
surjection from M, onto M, (induced by the identity map) preserves
@ and ®, but not necessarily —.

Theorem. (m =0, n = oco: Sorbi; m = 0,n = 1: Higuchi and Kihara)
Let n,m € wU{oco} with n < m. Then there is an embedding of M,
into M, preserving & and —, but not necessarily ®.
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Levels of uniformity

Definition. Let 4 <,, B. Then we say that the uniformity of 4 to B
is the least n € w U {oo} such that 4 <, B.

Proposition. (Higuchi and Kihara) Let 4 <,, B be such that 4 is
39, 1. Then the uniformity of 4 to B is at most max(n, 2).

n
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Levels of uniformity in randomness

Theorem. (Effective 0-1-law, Ku&era) Let n € w, let V be a N%-class
of positive measure and let X be n-random. Then there is a k € w

with X | [k, 00) € V.

Theorem. Let n € w, let A be a mass problem and let n—Random
be the class of n-randoms. Assume there exists a M%-class V of
positive measure such that 4 <,, V. Then A4 <, n-Random.

Theorem. Let n € wU {oco} with n > 1. Then n-DNC
Muchnik-reduces to n-randomness, with uniformity n.

Corollary. If n £ m then n-reducibility and m-reducibility differ.

Theorem. The uniformity of the non-computably-dominated
functions to the 2-random sets is 2.



More levels of uniformity

Theorem. (Higuchi and Kihara)

DNC, %1 DNCj.

Corollary. The uniformity of DNCy to DNC3 is 2.
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Comparing to layerwise computability

Fix a universal Martin-Lof test Uy, U, . ... Let us say that 4
layerwise reduces to 1-randomness if there is a uniformly computable
sequence e, €1, ... such that &, (2* \ ;) C 4.

Question. Is this weaker than 1-uniform reducibility to n-Random?

Theorem. Let n € wU {oo} with n > 1. Then n-DNCzm
Muchnik-reduces to n-randomness, with uniformity n.

Proposition. We do not have that n-DNCom reduces layerwise to
n-randomness.
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Theorem. Let n,m € wU {oo} with m < n and {n,m} # {0,1}.
Then M, and M, are not elementarily equivalent.

Proof. Easy case: n = co. Muchnik reducibility is definable in 9/,
(Dyment). Since m-reducibility and Muchnik reducibility do not
coincide, form the sentence expressing this.
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Hard case: n € w. We use the following two lemmas.

Lemma. If f, g are A%, then C({f}) ® C({g}) =, C({f,g}).
Lemma. Let X & Y be max(m,1)-random. Then

C{X}) @ C({Y}) £m C({X, Y}).

Furthermore:

e The Medvedev degrees of {{f} | f € w*”} are isomorphic to the
Turing degrees (Medvedev).

e They are definable in 4 (Dyment).

e C is definable in the Medvedev degrees (essentially Dyment).

o The A%degrees are definable in the Turing degrees (Shore and
Slaman).

Using this, express that “there are A2 X and Y such that
CH{X} e C{Y}) £ CH{X, Y})". O



Thank you

Thank you!




