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Medvedev reducibility

Definition. Let A ,B ⊆ ωω. Then we say that A Medvedev reduces
to B (A ≤M B) if there is a single Turing functional Φ such that
Φ(B) ⊆ A .



Medvedev reducibility



Muchnik reducibility

Definition. Let A ,B ⊆ ωω. Then we say that A Muchnik reduces to
B (A ≤w B) if and only if for every g ∈ B there exists f ∈ A with
f ≤T g .



Muchnik reducibility



Where uniformity fails

Theorem. (Kučera) Let n ∈ ω and let X be n-random. Then X
computes an n-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2ω.

Theorem. (Kautz) Every 2-random computes a function which is not
computably dominated.

Proposition. This does not hold uniformly.

Proof. Majority vote.
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Theorem. (Kučera) Let n ∈ ω and let X be n-random. Then X
computes an n-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2ω.

Theorem. (Kautz) Every 2-random computes a function which is not
computably dominated.

Proposition. This does not hold uniformly.

Proof. Majority vote.



Where uniformity fails
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More failing uniformity

Theorem. (Jockusch) We have that DNC2 ≤w DNC3, but
DNC2 6≤M DNC3.

Proof. A kind of majority vote.
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Intermediate degree structures

Definition. Let A ,B ⊆ ωω and let n ∈ ω. Then we say that A
n-uniformly reduces to B (notation: A ≤n B) if there exists a
sequence V0,V1, . . . of uniformly Π0

n sets with B ⊆
⋃

i∈ω Vi and a
uniformly computable sequence e0, e1, . . . such that for every i ∈ ω
and every f ∈ B ∩ Vi we have Φei (f ) ∈ A .
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Note that ≤n induces a degree structure Mn in the usual way, the
n(-uniform)-degrees.

For n = 1, this structure was also studied by Higuchi and Kihara,
although in a different setting and with a different (but equivalent)
definition.
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Some elementary results

Proposition. Medvedev reducibility and 0-reducibility coincide.

We will write ≤∞ for ≤w .

Proposition. For every n ∈ ω ∪ {∞}, Mn is a distributive lattice. In
fact, it is even a Brouwer algebra: there is an operation →n such that

A ⊕ C ≥n B ⇔ C ≥n A →n B .
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Going back and forth

Proposition. Let n,m ∈ ω ∪ {∞} with n ≤ m. Then the natural
surjection from Mn onto Mm (induced by the identity map) preserves
⊕ and ⊗, but not necessarily →.

Theorem. (m = 0, n =∞: Sorbi; m = 0,n = 1: Higuchi and Kihara)
Let n,m ∈ ω ∪ {∞} with n ≤ m. Then there is an embedding of Mn

into Mm preserving ⊕ and →, but not necessarily ⊗.

M0 M1 M2 · · · M∞



Levels of uniformity

Definition. Let A ≤w B . Then we say that the uniformity of A to B
is the least n ∈ ω ∪ {∞} such that A ≤n B .

Proposition. (Higuchi and Kihara) Let A ≤w B be such that A is
Σ0
n+1. Then the uniformity of A to B is at most max(n, 2).
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Levels of uniformity in randomness

Theorem. (Effective 0-1-law, Kučera) Let n ∈ ω, let V be a Π0
n-class

of positive measure and let X be n-random. Then there is a k ∈ ω
with X � [k ,∞) ∈ V.

Theorem. Let n ∈ ω, let A be a mass problem and let n−Random
be the class of n-randoms. Assume there exists a Π0

n-class V of
positive measure such that A ≤M V. Then A ≤n n-Random.

Theorem. Let n ∈ ω ∪ {∞} with n ≥ 1. Then n-DNC
Muchnik-reduces to n-randomness, with uniformity n.

Corollary. If n 6= m then n-reducibility and m-reducibility differ.

Theorem. The uniformity of the non-computably-dominated
functions to the 2-random sets is 2.
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n-class

of positive measure and let X be n-random. Then there is a k ∈ ω
with X � [k ,∞) ∈ V.

Theorem. Let n ∈ ω, let A be a mass problem and let n−Random
be the class of n-randoms. Assume there exists a Π0

n-class V of
positive measure such that A ≤M V. Then A ≤n n-Random.

Theorem. Let n ∈ ω ∪ {∞} with n ≥ 1. Then n-DNC
Muchnik-reduces to n-randomness, with uniformity n.

Corollary. If n 6= m then n-reducibility and m-reducibility differ.

Theorem. The uniformity of the non-computably-dominated
functions to the 2-random sets is 2.



Levels of uniformity in randomness

Theorem. (Effective 0-1-law, Kučera) Let n ∈ ω, let V be a Π0
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More levels of uniformity

Theorem. (Higuchi and Kihara)

DNC2 6≤1 DNC3.

Corollary. The uniformity of DNC2 to DNC3 is 2.



Comparing to layerwise computability

Fix a universal Martin-Löf test U0,U1, . . . . Let us say that A
layerwise reduces to 1-randomness if there is a uniformly computable
sequence e0, e1, . . . such that Φei (2ω \ Ui ) ⊆ A .

Question. Is this weaker than 1-uniform reducibility to n-Random?

Theorem. Let n ∈ ω ∪ {∞} with n ≥ 1. Then n-DNC

2m

Muchnik-reduces to n-randomness, with uniformity n.

Proposition. We do not have that n-DNC2m reduces layerwise to
n-randomness.
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Theorem. Let n,m ∈ ω ∪ {∞} with m < n and {n,m} 6= {0, 1}.
Then Mn and Mm are not elementarily equivalent.

Proof. Easy case: n =∞. Muchnik reducibility is definable in Mm

(Dyment). Since m-reducibility and Muchnik reducibility do not
coincide, form the sentence expressing this.



Elementary (in)equivalence

Hard case: n ∈ ω. We use the following two lemmas.

Lemma. If f , g are ∆0
n, then C ({f })⊗ C ({g}) ≡n C ({f , g}).

Lemma. Let X ⊕ Y be max(m, 1)-random. Then
C ({X})⊗ C ({Y }) 6≤m C ({X ,Y }).

Furthermore:
• The Medvedev degrees of {{f } | f ∈ ωω} are isomorphic to the

Turing degrees (Medvedev).
• They are definable in M (Dyment).
• C is definable in the Medvedev degrees (essentially Dyment).
• The ∆0

n-degrees are definable in the Turing degrees (Shore and
Slaman).

Using this, express that “there are ∆0
n X and Y such that

C ({X})⊗ C ({Y }) 6≤ C ({X ,Y })”.
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