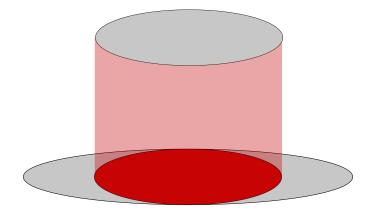
A measure of uniformity

Rutger Kuyper

4 October 2015

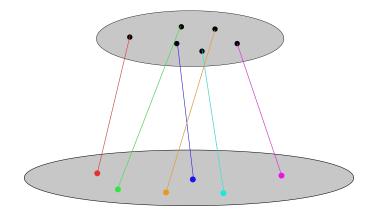
Definition. Let $\mathcal{A}, \mathcal{B} \subseteq \omega^{\omega}$. Then we say that \mathcal{A} Medvedev reduces to \mathcal{B} ($\mathcal{A} \leq_{\mathcal{M}} \mathcal{B}$) if there is a single Turing functional Φ such that $\Phi(\mathcal{B}) \subseteq \mathcal{A}$.

Medvedev reducibility



Definition. Let $\mathcal{A}, \mathcal{B} \subseteq \omega^{\omega}$. Then we say that \mathcal{A} *Muchnik reduces* to \mathcal{B} ($\mathcal{A} \leq_w \mathcal{B}$) if and only if for every $g \in \mathcal{B}$ there exists $f \in \mathcal{A}$ with $f \leq_T g$.

Muchnik reducibility



Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an *n*-DNC function.

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an *n*-DNC function.

Proposition. This does not hold uniformly.

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an *n*-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2^{ω} .

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an *n*-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2^{ω} .

Theorem. (Kautz) Every 2-random computes a function which is not computably dominated.

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an *n*-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2^{ω} .

Theorem. (Kautz) Every 2-random computes a function which is not computably dominated.

Proposition. This does not hold uniformly.

Theorem. (Kučera) Let $n \in \omega$ and let X be n-random. Then X computes an *n*-DNC function.

Proposition. This does not hold uniformly.

Proof. Use the fact that the random reals are dense within 2^{ω} .

Theorem. (Kautz) Every 2-random computes a function which is not computably dominated.

Proposition. This does not hold uniformly.

Proof. Majority vote.

More failing uniformity

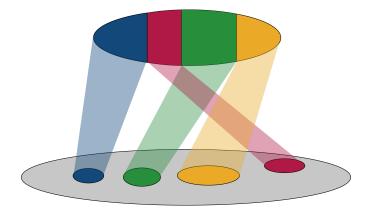
Theorem. (Jockusch) We have that $DNC_2 \leq_w DNC_3$, but $DNC_2 \not\leq_{\mathcal{M}} DNC_3$.

More failing uniformity

Theorem. (Jockusch) We have that $DNC_2 \leq_w DNC_3$, but $DNC_2 \not\leq_{\mathcal{M}} DNC_3$.

Proof. A kind of majority vote.

Intermediate degree structures



Note that \leq_n induces a degree structure \mathcal{M}_n in the usual way, the n(-uniform)-degrees.

Note that \leq_n induces a degree structure \mathcal{M}_n in the usual way, the n(-uniform)-degrees.

For n = 1, this structure was also studied by Higuchi and Kihara, although in a different setting and with a different (but equivalent) definition.

Proposition. Medvedev reducibility and 0-reducibility coincide.

We will write \leq_{∞} for \leq_{w} .

Proposition. Medvedev reducibility and 0-reducibility coincide.

We will write \leq_{∞} for \leq_{w} .

Proposition. For every $n \in \omega \cup \{\infty\}$, \mathcal{M}_n is a distributive lattice. In fact, it is even a Brouwer algebra: there is an operation \rightarrow_n such that

 $\mathcal{A} \oplus \mathcal{C} \geq_n \mathcal{B} \Leftrightarrow \mathcal{C} \geq_n \mathcal{A} \rightarrow_n \mathcal{B}.$

Proposition. Let $n, m \in \omega \cup \{\infty\}$ with $n \leq m$. Then the natural surjection from \mathcal{M}_n onto \mathcal{M}_m (induced by the identity map) preserves \oplus and \otimes , but not necessarily \rightarrow .

Theorem. $(m = 0, n = \infty$: Sorbi; m = 0, n = 1: Higuchi and Kihara) Let $n, m \in \omega \cup \{\infty\}$ with $n \leq m$. Then there is an embedding of \mathcal{M}_n into \mathcal{M}_m preserving \oplus and \rightarrow , but not necessarily \otimes .

$$\mathcal{M}_0 \stackrel{\longleftrightarrow}{\longrightarrow} \mathcal{M}_1 \stackrel{\longleftrightarrow}{\longleftarrow} \mathcal{M}_2 \stackrel{\longleftrightarrow}{\longleftarrow} \cdots \stackrel{\longleftrightarrow}{\longleftarrow} \mathcal{M}_{\infty}$$

Definition. Let $\mathcal{A} \leq_w \mathcal{B}$. Then we say that the *uniformity of* \mathcal{A} *to* \mathcal{B} is the least $n \in \omega \cup \{\infty\}$ such that $\mathcal{A} \leq_n \mathcal{B}$.

Definition. Let $\mathcal{A} \leq_w \mathcal{B}$. Then we say that the *uniformity of* \mathcal{A} *to* \mathcal{B} is the least $n \in \omega \cup \{\infty\}$ such that $\mathcal{A} \leq_n \mathcal{B}$.

Proposition. (Higuchi and Kihara) Let $\mathcal{A} \leq_w \mathcal{B}$ be such that \mathcal{A} is $\sum_{n=1}^{0}$. Then the uniformity of \mathcal{A} to \mathcal{B} is at most $\max(n, 2)$.

Theorem. Let $n \in \omega$, let \mathcal{A} be a mass problem and let n-Random be the class of *n*-randoms. Assume there exists a $\prod_{n=1}^{0} -class \mathcal{V}$ of positive measure such that $\mathcal{A} \leq_{\mathcal{M}} \mathcal{V}$. Then $\mathcal{A} \leq_{n} n$ -Random.

Theorem. Let $n \in \omega$, let \mathcal{A} be a mass problem and let n-Random be the class of *n*-randoms. Assume there exists a $\prod_{n=1}^{0} -class \mathcal{V}$ of positive measure such that $\mathcal{A} \leq_{\mathcal{M}} \mathcal{V}$. Then $\mathcal{A} \leq_{n} n$ -Random.

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \ge 1$. Then *n*-DNC *Muchnik-reduces to n-randomness, with uniformity n.*

Theorem. Let $n \in \omega$, let \mathcal{A} be a mass problem and let n-Random be the class of *n*-randoms. Assume there exists a $\prod_{n=1}^{0} -class \mathcal{V}$ of positive measure such that $\mathcal{A} \leq_{\mathcal{M}} \mathcal{V}$. Then $\mathcal{A} \leq_{n} n$ -Random.

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \ge 1$. Then *n*-DNC Muchnik-reduces to *n*-randomness, with uniformity *n*.

Corollary. If $n \neq m$ then *n*-reducibility and *m*-reducibility differ.

Theorem. Let $n \in \omega$, let \mathcal{A} be a mass problem and let n-Random be the class of *n*-randoms. Assume there exists a $\prod_{n=1}^{0} -class \mathcal{V}$ of positive measure such that $\mathcal{A} \leq_{\mathcal{M}} \mathcal{V}$. Then $\mathcal{A} \leq_{n} n$ -Random.

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \ge 1$. Then *n*-DNC Muchnik-reduces to *n*-randomness, with uniformity *n*.

Corollary. If $n \neq m$ then *n*-reducibility and *m*-reducibility differ.

Theorem. The uniformity of the non-computably-dominated functions to the 2-random sets is 2.

More levels of uniformity

Theorem. (Higuchi and Kihara)

 $\mathrm{DNC}_2 \not\leq_1 \mathrm{DNC}_3.$

Corollary. The uniformity of DNC_2 to DNC_3 is 2.

Fix a universal Martin-Löf test $\mathcal{U}_0, \mathcal{U}_1, \ldots$ Let us say that \mathcal{A} layerwise reduces to 1-randomness if there is a uniformly computable sequence e_0, e_1, \ldots such that $\Phi_{e_i}(2^{\omega} \setminus \mathcal{U}_i) \subseteq \mathcal{A}$.

Question. Is this weaker than 1-uniform reducibility to *n*-Random?

Fix a universal Martin-Löf test $\mathcal{U}_0, \mathcal{U}_1, \ldots$ Let us say that \mathcal{A} layerwise reduces to 1-randomness if there is a uniformly computable sequence e_0, e_1, \ldots such that $\Phi_{e_i}(2^{\omega} \setminus \mathcal{U}_i) \subseteq \mathcal{A}$.

Question. Is this weaker than 1-uniform reducibility to *n*-Random?

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \ge 1$. Then *n*-DNC *Muchnik-reduces to n-randomness, with uniformity n.*

Fix a universal Martin-Löf test $\mathcal{U}_0, \mathcal{U}_1, \ldots$ Let us say that \mathcal{A} layerwise reduces to 1-randomness if there is a uniformly computable sequence e_0, e_1, \ldots such that $\Phi_{e_i}(2^{\omega} \setminus \mathcal{U}_i) \subseteq \mathcal{A}$.

Question. Is this weaker than 1-uniform reducibility to *n*-Random?

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \ge 1$. Then n-DNC_{2^m} Muchnik-reduces to n-randomness, with uniformity n.

Fix a universal Martin-Löf test $\mathcal{U}_0, \mathcal{U}_1, \ldots$ Let us say that \mathcal{A} layerwise reduces to 1-randomness if there is a uniformly computable sequence e_0, e_1, \ldots such that $\Phi_{e_i}(2^{\omega} \setminus \mathcal{U}_i) \subseteq \mathcal{A}$.

Question. Is this weaker than 1-uniform reducibility to *n*-Random?

Theorem. Let $n \in \omega \cup \{\infty\}$ with $n \ge 1$. Then n-DNC_{2^m} Muchnik-reduces to n-randomness, with uniformity n.

Proposition. We do not have that n-DNC_{2^m} reduces layerwise to *n*-randomness.

Theorem. Let $n, m \in \omega \cup \{\infty\}$ with m < n and $\{n, m\} \neq \{0, 1\}$. Then \mathcal{M}_n and \mathcal{M}_m are not elementarily equivalent. **Theorem.** Let $n, m \in \omega \cup \{\infty\}$ with m < n and $\{n, m\} \neq \{0, 1\}$. Then \mathcal{M}_n and \mathcal{M}_m are not elementarily equivalent.

Proof. Easy case: $n = \infty$. Muchnik reducibility is definable in \mathcal{M}_m (Dyment). Since *m*-reducibility and Muchnik reducibility do not coincide, form the sentence expressing this.

Hard case: $n \in \omega$. We use the following two lemmas.

Lemma. If f, g are Δ_n^0 , then $C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f,g\})$. **Lemma.** Let $X \oplus Y$ be $\max(m, 1)$ -random. Then $C(\{X\}) \otimes C(\{Y\}) \not\leq_m C(\{X, Y\})$.

Hard case: $n \in \omega$. We use the following two lemmas.

Lemma. If f, g are Δ_n^0 , then $C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f,g\})$.

Lemma. Let $X \oplus Y$ be $\max(m, 1)$ -random. Then $C(\{X\}) \otimes C(\{Y\}) \not\leq_m C(\{X, Y\})$.

Furthermore:

 The Medvedev degrees of {{*f*} | *f* ∈ ω^ω} are isomorphic to the Turing degrees (Medvedev).

Hard case: $n \in \omega$. We use the following two lemmas.

Lemma. If f, g are Δ_n^0 , then $C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f,g\})$.

Lemma. Let $X \oplus Y$ be $\max(m, 1)$ -random. Then $C(\{X\}) \otimes C(\{Y\}) \not\leq_m C(\{X, Y\})$.

Furthermore:

- The Medvedev degrees of {{*f*} | *f* ∈ ω^ω} are isomorphic to the Turing degrees (Medvedev).
- They are definable in \mathcal{M} (Dyment).

Hard case: $n \in \omega$. We use the following two lemmas.

Lemma. If f, g are Δ_n^0 , then $C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f,g\})$.

Lemma. Let $X \oplus Y$ be $\max(m, 1)$ -random. Then $C(\{X\}) \otimes C(\{Y\}) \not\leq_m C(\{X, Y\})$.

Furthermore:

- The Medvedev degrees of {{*f*} | *f* ∈ ω^ω} are isomorphic to the Turing degrees (Medvedev).
- They are definable in \mathcal{M} (Dyment).
- C is definable in the Medvedev degrees (essentially Dyment).

Hard case: $n \in \omega$. We use the following two lemmas.

Lemma. If f, g are Δ_n^0 , then $C(\{f\}) \otimes C(\{g\}) \equiv_n C(\{f,g\})$.

Lemma. Let $X \oplus Y$ be $\max(m, 1)$ -random. Then $C(\{X\}) \otimes C(\{Y\}) \not\leq_m C(\{X, Y\})$.

Furthermore:

- The Medvedev degrees of {{*f*} | *f* ∈ ω^ω} are isomorphic to the Turing degrees (Medvedev).
- They are definable in \mathcal{M} (Dyment).
- C is definable in the Medvedev degrees (essentially Dyment).
- The Δ⁰_n-degrees are definable in the Turing degrees (Shore and Slaman).

Using this, express that "there are $\Delta_n^0 X$ and Y such that $C(\{X\}) \otimes C(\{Y\}) \not\leq C(\{X,Y\})$ ".

Thank you!