Bounded low and high sets

Karen Lange Wellesley College

Joint work with Bernard Anderson & Barbara Csima

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reducibilities

Compare relative computational complexity of $A, B \subset \omega$.

If $A \leq B$ and $B \leq A$, we say A, B have the same *degree*.

From weaker to stronger:

- ► Turing ≤_T
- ▶ Bounded Turing \leq_{bT} (or Weak Truth Table \leq_{wtt})

- Truth table \leq_{tt}
- ▶ m-reducibility ≤_m
- 1-reducibility \leq_1

Bounded Turing reducibility

Let $A, B \subset \omega$. Let $B \upharpoonright x = \{n \in B \mid n \le x\}$. Definition A is bounded Turing (weak truth table) reducible to B, written $A \le_{bT} B$, if there are i, j s.t.

φ_j is total and

• for all
$$x$$
, $A(x) = \Phi_i^{B \upharpoonright \varphi_j(x)}(x) \downarrow$.

where

 $\varphi_0, \varphi_1, \varphi_2, ...$ an effective enum. of the part. comp. fcns. and $\Phi_0, \Phi_1, \Phi_2, ...$ an effective enum. of the Turing functionals.

Motivation

(Anderson & Csima) Defined a "bounded jump" A^b tailored to work with \leq_{bT} that is strictly increasing and order preserving on bounded Turing degrees.

They studied

- Jump inversion properties
- Generalized result $A \leq_{bT} \emptyset'$ iff A is ω -c.e.

Goals

- 1. Compare bounded low/high sets to standard jump counterparts.
- Discuss analogue of Jump Theorem: A ≤_T B iff A' ≤₁ B'. Do we have

$$A \leq_{bT} B \iff A^b \leq_1 B^b?$$

Bounded jump

Definition (Anderson & Csima) The *bounded jump of a set A* is

$$\mathcal{A}^b = \{x \in \omega \mid (\exists i \leq x) [arphi_i(x) \downarrow \land \Phi_x^{\mathcal{A} [arphi_i(x)}(x) \downarrow] \}$$

Let A^{nb} denote the *n*-th bounded jump.

Lemma (Anderson & Csima) For all sets A,

- (Strictly increasing) $A \leq_1 A^b \leq_1 A'$ but $A^b \not\leq_{bT} A$.
- (Order preserving) If $A \leq_{bT} B$, then $A^b \leq_{tt} B^b$.
- $\blacktriangleright \ \emptyset^b \equiv_1 \emptyset'.$
- $A^b \equiv_T A \oplus \emptyset'$ but $B^b \not\equiv_{bT} B \oplus \emptyset'$ for most B.

Low & high sets

Recall that a set A is low (high) w.r.t. a jump operator if its jump encodes the least (most) possible information.

So,

• A is low if $A' \leq_T \emptyset'$ and bounded low if $A^b \leq_{bT} \emptyset^b \equiv_1 \emptyset'$.

•
$$A \leq_T \emptyset'$$
 is high if $A' \geq_T \emptyset''$, and

•
$$A \leq_{bT} \emptyset^b \equiv_1 \emptyset'$$
 is bounded high if $A^b \geq_{bT} \emptyset^{2b}$.

Remark
$$X \leq_T \emptyset^{(n)} \iff X$$
 is Δ^0_{n+1} .Anderson & Csima characterized the sets $X \leq_{bT} \emptyset^{nb}$

Ershov hierarchy

Fix a "nice" computable coding of ordinals $< \omega^{\omega}$.

Let $\alpha \geq \omega$.

Definition

A set A is α -c.e. if there is a partial comp. $\psi : \omega \times \alpha \rightarrow \{0, 1\}$ s.t.

▶ for all $n \in \omega$, there is a $\beta < \alpha$ s.t. $\psi(n, \beta) \downarrow$, and

•
$$A(n) = \psi(n, \gamma)$$
 for γ least s.t. $\psi(n, \gamma) \downarrow$.

The following generalizes the classical result

$$A \leq_{bT} \emptyset' \iff A \text{ is } \omega\text{-c.e.}$$

Theorem (Anderson & Csima) For a set X and $n \ge 2$, $X \le_{bT} \emptyset^{nb} \iff X \text{ is } \omega^n \text{-}c.e. \iff X \le_1 \emptyset^{nb}.$

Extreme examples

Goals

1. Compare bounded low/high sets to standard jump counterparts.

Are there "extreme" examples – ones that code high information w.r.t. to one jump and low content w.r.t. the other?

Theorem

There exists a c.e. bounded low set that is high.

Requirements

Recall (Martin) $\emptyset'' \leq_T A'$ iff there is a dominant fcn. $f \leq_T A$, i.e., any comp. g satisfies $(\forall^{\infty} n)[f(n) \geq g(n)].$

If $\bar{A} = \{a_0 < a_1 < a_2 < \}$, then $p_{\bar{A}}(n) = a_n$.

$(p_{\bar{A}} \text{ dominant})$

 \mathbf{R}_i : If φ_i is total, then $(\exists m)(\forall l \ge m)[p_{\bar{A}}(l) \ge \varphi_i(l)]$.

 $(A^b \ \omega\text{-c.e.})$ To show A bounded low, enforce a computable bound on times $A^b(x)[s]$ can change.

$$x \in A^b \iff (\exists n \leq x) [\varphi_n(x) \downarrow \land \Phi_x^{A [\varphi_n(x)}(x) \downarrow]$$

 \mathbf{P}_x protects uses $\varphi_n(x)$ for $A^b(x)$ if $n \leq x$.

Theorem

There exists a low set $A \leq_{bT} \emptyset'$ that is bounded high.

Construct ω -c.e. set A (so $A \leq_{bT} \emptyset'$) satisfying $A' \leq_{T} \emptyset'$ and $A^{b} \geq_{bT} \emptyset^{2b}$.

Requirements

(A low)

$$\mathbf{N}_e: \quad \left(\exists^{\infty}s\right) \left[\Phi_e^A(e)[s]\downarrow\right] \implies \Phi_e^A(e)\downarrow.$$

(Code \emptyset^{2b} into A^b)

Construct Ψ and comp. f s.t.

$$\mathbf{P}_n: \quad \Psi^{A^b \upharpoonright f(n)}(n) \downarrow = \emptyset^{2b}(n).$$

Use that \emptyset^{2b} is ω^2 -c.e.

Theorem

There exists a low set $A \leq_{bT} \emptyset'$ that is bounded high.

Construct ω -c.e. set A (so $A \leq_{bT} \emptyset'$) satisfying $A' \leq_{T} \emptyset'$ and $A^{b} \geq_{bT} \emptyset^{2b}$.

 $(A \ \omega$ -c.e.) Make sure A(n)[s] changes at most n times. Requirements

(A low)

$$\mathbf{N}_e$$
: $(\exists^{\infty}s) [\Phi_e^A(e)[s] \downarrow] \implies \Phi_e^A(e) \downarrow.$

* Restrain \mathbf{P}_i with $i \ge e$ from changing A(x)[s] below $r(e, s) = max_{t \le s}$ use of $\Phi_e^A(e)[t]$.

Theorem

There exists a low set $A \leq_{bT} \emptyset'$ that is bounded high.

(Code \emptyset^{2b} into A^b)

Construct Ψ and comp. f s.t.

$$\mathbf{P}_n: \quad \Psi^{A^b \upharpoonright f(n)}(n) \downarrow = \emptyset^{2b}(n).$$

 \emptyset^{2b} is ω^2 -c.e. so \emptyset^{2b} has an approx fcn $\psi(n,\beta)$

• Let $\beta_{n,s}$ be least $\beta < \omega^2$ s.t. $\psi(n,\beta)[s] \downarrow$.

$$\beta_{n,s} = \omega \cdot I_{n,s} + k_{n,s} \text{ for some } I_{n,s}, k_{n,s} \in \omega.$$

(Code \emptyset^{2b} into A^b)

$$\mathbf{P}_n: \quad \Psi^{A^b \restriction f(n)}(n) \downarrow = \emptyset^{2b}(n).$$

 $\Psi^{A^b}(n)$ only asks about \mathbf{P}_n -block of indices (which we control). Block consists of location / \mathbf{P}_n -subblocks, for $l \leq l_{n,0}$, each with

- Location index: indicates if $I_{n,s} = I$ at current stage s;
- Coding indices: If $I_{n,s} = I$, then $c_{n,s}$ codes $\emptyset^{2b}(n)[s]$;
- Injury indices: Use to destroy Ψ -computations if injury.

(Can find comp. f since size of blocks computably bounded.)

(Code \emptyset^{2b} into A^b) Assume $\mathbf{P}_n[s]: \quad \Psi^{A^b}(n)[s] \downarrow = A^b(c_{n,s})[s] = \emptyset^{2b}(n)[s]$, and $c_{n,s} \in A^b[s]$ depends on if $\tilde{c}_{n,s} \in A[s]$. **stage** s + 1 Consider if $I_{n,s+1} = I_{n,s}$:

Yes Continue in Location $I_{n,s}$ -subblock & Maintain Ψ .

• If $k_{n,s+1} = k_{n,s}$, maintain status quo.

- ▶ Else, change $A(\tilde{c}_{n,s})[s+1]$ to update if coding index $c_{n,s} \in A^b[s]$.
- No Kill Ψ -computation with Location index, update it in Location $I_{n,s+1}$ -subblock

*
$$\mathbf{P}_n$$
 injured if $\tilde{c}_{n,s} \leq \max_{e \leq n} r(e, s + 1)$
Use Injury indices to change Ψ , $c_{n,s}$ $\tilde{c}_{n,s}$.

Theorem

There exists a low set $A \leq_{bT} \emptyset'$ that is bounded high.

Theorem There exists a c.e. bounded low set that is high.

Question

Does there exist a low c.e. set that is bounded high?

Theorem (Schoenfield) For all Σ_2 sets $X \ge_T \emptyset'$, there is a $Y \le_T \emptyset'$ s.t. $Y' \equiv_T X$.

Analog of **Schoenfield jump inversion** fails with usual jump.

Theorem (Csima, Downey, & Ng) There is a Σ_2 set $C >_{tt} \emptyset'$ s.t. for all $D \leq_T \emptyset'$ we have $D' \not\equiv_{bT} C$.

Jump inversion results

Theorem (Schoenfield) For all Σ_2 sets $X \ge_T \emptyset'$, there is a $Y \le_T \emptyset'$ s.t. $Y' \equiv_T X$.

Analog of **Schoenfield jump inversion fails** with usual jump.

But...

Analog of Schoenfield jump inversion holds with bounded jump.

Theorem (Anderson & Csima) Given B s.t. $\emptyset^b \leq_{bT} B \leq_{bT} \emptyset^{2b}$, there is an $A \leq_{bT} \emptyset^b$ s.t. $A^b \equiv_{bT} B$.

What other classical results hold for bounded Turing degrees?

Jump Theorem

Let A, B be sets.

Theorem (Jump Theorem)

 $A \leq_T B \Leftrightarrow A' \leq_1 B'$

Another bounded jump:

$$\mathcal{A}^{b_0} = \{ \langle e, i, j \rangle \in \omega \mid \varphi_i(j) \downarrow \land \Phi_e^{\mathcal{A} \restriction \varphi_i(j)}(j) \downarrow \}.$$

Theorem

- 1. (Anderson & Csima) $A \leq_{bT} B \implies A^{b_0} \leq_1 B^{b_0}$.
- 2. (Downey & Greenberg) Converse false: there are A, B s.t. $A^{b_0} \leq_1 B^{b_0}$ but $A \not\leq_{bT} B$.

Analog for bounded jump does not follow:

(Anderson & Csima) $A^{b_0} \equiv_{tt} A^b$ but $A^b \not\equiv_1 A^{b_0}$ possible.

Bounded Jump Theorem

Let A, B be sets. Theorem (Jump Theorem) $A \leq_T B \Leftrightarrow A' \leq_1 B'$

Theorem

- 1. $A \leq_{bT} B \implies A^b \leq_1 B^b$.
- 2. Converse false: there are c.e. sets A, B s.t. $A^b \leq_1 B^b$ but $A \not\leq_{bT} B$.

More Questions

Definition

A set $A \leq_T \emptyset'$ is superlow if $A' \leq_{tt} \emptyset'$ and superhigh if $A' \geq_{tt} \emptyset''$.

(Mohrherr) There are low but not superlow and high but not superhigh c.e. sets.

Question

Does there exist a low bounded low set that is not superlow? Does there exists a high bounded high set that is not superhigh?

Any superlow set is bounded low since $A^b \leq_1 A'$. But, does there exist a superhigh set that is not bounded high?

Question

Provide characterizations of bounded low and bounded high sets.

Ask these questions for other strong reducibility jump operators, (e.g., Gerla, etc.)

References

<ロ> <@> < E> < E> E のQの

Truth table reducibility

Definition

A *truth table reduction* is a pair of computable functions f and g s.t for all x,

- f(x) supplies a finite list $x_1, ..., x_n$ of oracle positions, and
- g(x) gives a truth table on *n* variables (a map $2^n \rightarrow 2$).

A is truth table reducible to B, written $A \leq_{tt} B$, if there is a truth-table reduction f, g s.t. for all x,

 $x \in A \iff$

the row of the truth table g obtained by viewing B on the positions $x_1, ..., x_n$ outputs value 1.

Gerla's jump operator

Definition

A *tt-condition* consists of an $(x_1 \dots x_k) \in \omega^{<\omega}$ and an $\alpha : 2^k \to 2$.

A *tt*-condition is *satisfied by* A if $\alpha(A(x_1)...A(x_k)) = 1$.

We set $A^{tt} = \{x \mid x \text{ is a } tt\text{-condition satisfied by } A\}$.

```
Note A^{tt} \leq_{tt} A and A \leq_1 A^{tt}.
```

Definition (Gerla)

Jumps for

- (*tt*-degrees) $A_{tt} = \{x \mid \varphi_x(x) \downarrow \in A^{tt}\}.$
- ► (bounded *tt*-degrees of norm $k \in \omega$) $A_{bk} = \{x \mid \varphi_x(x) \downarrow \in A^{tt} \land \varphi_x(x) \le k\}.$

Results on Gerla's jump

Theorem (Gerla)

- 1. $A_{tt} \not\leq_{tt} A$. $A_{bk} \not\leq_{bk} A$.
- 2. $A \leq_{tt} B \Rightarrow A_{tt} \leq_1 B_{tt}$.
- 3. $A <_1 A_{bk} \leq_1 A_{b(k+1)} \leq_1 A_{tt} \leq_1 A'$.
- 4. $\emptyset_{bk} \equiv_1 \emptyset_{tt} \equiv_1 \emptyset'$.

Theorem (Gerla) If A is n-c.e. and $B \leq_1 A_{bk}$, then B is (nk + 1)-c.e.

Theorem (Anderson &Csima) In general, $A_{tt} \leq_1 A^b$, but there are many X s.t. $X^b \not\leq_{bT} X_{tt}$.