
Bounded low and high sets

Karen Lange
Wellesley College

Joint work with Bernard Anderson & Barbara Csima



Reducibilities

Compare relative computational complexity of A,B ⊂ ω.

If A ≤ B and B ≤ A, we say A,B have the same degree.

From weaker to stronger:

I Turing ≤T

I Bounded Turing ≤bT (or Weak Truth Table ≤wtt)

I Truth table ≤tt

I m-reducibility ≤m

I 1-reducibility ≤1



Bounded Turing reducibility

Let A,B ⊂ ω.

Let B �� x = {n ∈ B | n ≤ x}.

Definition
A is bounded Turing (weak truth table) reducible to B, written
A ≤bT B, if there are i , j s.t.

I ϕj is total and

I for all x , A(x) = Φ
B��ϕj (x)
i (x) ↓.

where
ϕ0, ϕ1, ϕ2, ... an effective enum. of the part. comp. fcns. and
Φ0,Φ1,Φ2, ... an effective enum. of the Turing functionals.



Motivation

(Anderson & Csima)
Defined a “bounded jump” Ab tailored to work with ≤bT that is

strictly increasing and order preserving on bounded Turing degrees.

They studied

I Jump inversion properties

I Generalized result A ≤bT ∅′ iff A is ω-c.e.

Goals

1. Compare bounded low/high sets to standard jump
counterparts.

2. Discuss analogue of Jump Theorem: A ≤T B iff A′ ≤1 B
′
.

Do we have
A ≤bT B ⇐⇒ Ab ≤1 Bb?



Bounded jump

Definition (Anderson & Csima)

The bounded jump of a set A is

Ab = {x ∈ ω | (∃i ≤ x)[ϕi (x)↓ ∧ Φ
A��ϕi (x)
x (x)↓]}

Let Anb denote the n-th bounded jump.

Lemma (Anderson & Csima)

For all sets A,

I (Strictly increasing) A ≤1 Ab ≤1 A′ but Ab 6≤bT A.

I (Order preserving) If A ≤bT B, then Ab ≤tt Bb.

I ∅b ≡1 ∅′.
I Ab ≡T A⊕ ∅′ but Bb 6≡bT B ⊕ ∅′ for most B.



Low & high sets

Recall that a set A is low (high) w.r.t. a jump operator if its jump
encodes the least (most) possible information.

So,

I A is low if A′ ≤T ∅′ and bounded low if Ab ≤bT ∅b ≡1 ∅′.

I A ≤T ∅′ is high if A′ ≥T ∅′′, and

I A ≤bT ∅b ≡1 ∅′ is bounded high if Ab ≥bT ∅2b.

Remark X ≤T ∅(n) ⇐⇒ X is ∆0
n+1.

Anderson & Csima characterized the sets X ≤bT ∅nb



Ershov hierarchy

Fix a “nice” computable coding of ordinals < ωω.

Let α ≥ ω.

Definition
A set A is α-c.e. if there is a partial comp. ψ : ω×α→ {0, 1} s.t.

I for all n ∈ ω, there is a β < α s.t. ψ(n, β)↓, and

I A(n) = ψ(n, γ) for γ least s.t. ψ(n, γ)↓.

The following generalizes the classical result

A ≤bT ∅′ ⇐⇒ A is ω-c.e.

Theorem (Anderson & Csima)

For a set X and n ≥ 2,
X ≤bT ∅nb ⇐⇒ X is ωn-c.e. ⇐⇒ X ≤1 ∅nb.



Extreme examples

Goals

1. Compare bounded low/high sets to standard jump
counterparts.

Are there “extreme” examples – ones that code high information
w.r.t. to one jump and low content w.r.t. the other?



Theorem
There exists a c.e. bounded low set that is high.

Requirements

Recall (Martin) ∅′′ ≤T A′ iff there is a dominant fcn. f ≤T A, i.e.,
any comp. g satisfies (∀∞n)[ f (n) ≥ g(n) ].

If Ā = {a0 < a1 < a2 <}, then pĀ(n) = an.

(pĀ dominant)

Ri : If ϕi is total, then (∃m)(∀l ≥ m)[pĀ(l) ≥ ϕi (l)].

(Ab ω-c.e.) To show A bounded low,
enforce a computable bound on times Ab(x)[s] can change.

x ∈ Ab ⇐⇒ (∃n ≤ x)[ϕn(x)↓ ∧ Φ
A��ϕn(x)
x (x)↓]

Px protects uses ϕn(x) for Ab(x) if n ≤ x.



Low bounded high

Theorem
There exists a low set A ≤bT ∅′ that is bounded high.

Construct ω-c.e. set A (so A ≤bT ∅′) satisfying

A′ ≤T ∅′ and Ab ≥bT ∅2b.

Requirements

(A low)

Ne :
(
∃∞s

)[
ΦA
e (e)[s] ↓

]
=⇒ ΦA

e (e) ↓.

(Code ∅2b into Ab)

Construct Ψ and comp. f s.t.

Pn: ΨAb��f (n)(n) ↓= ∅2b(n).

Use that ∅2b is ω2-c.e.



Low bounded high

Theorem
There exists a low set A ≤bT ∅′ that is bounded high.

Construct ω-c.e. set A (so A ≤bT ∅′) satisfying

A′ ≤T ∅′ and Ab ≥bT ∅2b.

(A ω-c.e.) Make sure A(n)[s] changes at most n times.

Requirements

(A low)

Ne :
(
∃∞s

)[
ΦA
e (e)[s] ↓

]
=⇒ ΦA

e (e) ↓.

? Restrain Pi with i ≥ e from changing A(x)[s] below
r(e, s) = maxt≤s use of ΦA

e (e)[t].



Low bounded high

Theorem
There exists a low set A ≤bT ∅′ that is bounded high.

(Code ∅2b into Ab)

Construct Ψ and comp. f s.t.

Pn: ΨAb��f (n)(n) ↓= ∅2b(n).

∅2b is ω2-c.e. so ∅2b has an approx fcn ψ(n, β)

I Let βn,s be least β < ω2 s.t. ψ(n, β)[s] ↓.

I βn,s = ω · ln,s + kn,s for some ln,s , kn,s ∈ ω.



Low bounded high

(Code ∅2b into Ab)

Pn: ΨAb��f (n)(n) ↓= ∅2b(n).

ΨAb
(n) only asks about Pn-block of indices (which we control).

Block consists of location l Pn-subblocks, for l ≤ ln,0, each with

I Location index: indicates if ln,s = l at current stage s;

I Coding indices: If ln,s = l , then cn,s codes ∅2b(n)[s];

I Injury indices: Use to destroy Ψ-computations if injury.

(Can find comp. f since size of blocks computably bounded.)



Low bounded high

(Code ∅2b into Ab) Assume

Pn[s]: ΨAb
(n)[s] ↓= Ab(cn,s)[s] = ∅2b(n)[s], and

cn,s ∈ Ab[s] depends on if c̃n,s ∈ A[s].

stage s + 1 Consider if ln,s+1 = ln,s :

Yes Continue in Location ln,s -subblock & Maintain Ψ.

I If kn,s+1 = kn,s , maintain status quo.

I Else, change A(c̃n,s)[s + 1] to update if coding index cn,s ∈ Ab[s].

No Kill Ψ-computation with Location index, update it in Location
ln,s+1-subblock

? Pn injured if c̃n,s ≤ maxe≤n r(e, s + 1)

Use Injury indices to change Ψ, cn,s c̃n,s .



Low bounded high

Theorem
There exists a low set A ≤bT ∅′ that is bounded high.

Theorem
There exists a c.e. bounded low set that is high.

Question
Does there exist a low c.e. set that is bounded high?



Jump inversion results

Theorem (Schoenfield)

For all Σ2 sets X ≥T ∅′, there is a Y ≤T ∅′ s.t. Y ′ ≡T X .

Analog of Schoenfield jump inversion fails with usual jump.

Theorem (Csima, Downey, & Ng)

There is a Σ2 set C >tt ∅′ s.t. for all D ≤T ∅′ we have D ′ 6≡bT C .



Jump inversion results

Theorem (Schoenfield)

For all Σ2 sets X ≥T ∅′, there is a Y ≤T ∅′ s.t. Y ′ ≡T X .

Analog of Schoenfield jump inversion fails with usual jump.

But...

Analog of Schoenfield jump inversion holds with bounded jump.

Theorem (Anderson & Csima)

Given B s.t. ∅b ≤bT B ≤bT ∅2b,
there is an A ≤bT ∅b s.t. Ab ≡bT B.

What other classical results hold for bounded Turing degrees?



Jump Theorem
Let A, B be sets.

Theorem (Jump Theorem)

A ≤T B ⇔ A′ ≤1 B ′

Another bounded jump:

Ab0 = {〈e, i , j〉 ∈ ω | ϕi (j)↓ ∧ Φ
A��ϕi (j)
e (j)↓}.

Theorem

1. (Anderson & Csima) A ≤bT B =⇒ Ab0 ≤1 Bb0 .

2. (Downey & Greenberg) Converse false: there are A, B s.t.
Ab0 ≤1 Bb0 but A 6≤bT B.

Analog for bounded jump does not follow:

(Anderson & Csima) Ab0 ≡tt Ab but Ab 6≡1 Ab0 possible.



Bounded Jump Theorem

Let A, B be sets.

Theorem (Jump Theorem)

A ≤T B ⇔ A′ ≤1 B ′

Theorem

1. A ≤bT B =⇒ Ab ≤1 Bb.

2. Converse false: there are c.e. sets A, B s.t.
Ab ≤1 Bb but A 6≤bT B.



More Questions

Definition
A set A ≤T ∅′ is superlow if A′ ≤tt ∅′ and superhigh if A′ ≥tt ∅′′.

(Mohrherr) There are low but not superlow and high but not
superhigh c.e. sets.

Question
Does there exist a low bounded low set that is not superlow? Does
there exists a high bounded high set that is not superhigh?

Any superlow set is bounded low since Ab ≤1 A′.
But, does there exist a superhigh set that is not bounded high?

Question
Provide characterizations of bounded low and bounded high sets.

Ask these questions for other strong reducibility jump operators,
(e.g., Gerla, etc.)
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Truth table reducibility

Definition
A truth table reduction is a pair of computable functions f and g
s.t for all x ,

I f (x) supplies a finite list x1, ..., xn of oracle positions, and

I g(x) gives a truth table on n variables (a map 2n → 2).

A is truth table reducible to B, written A ≤tt B, if there is a
truth-table reduction f , g s.t. for all x ,

x ∈ A ⇐⇒
the row of the truth table g obtained by viewing B on the

positions x1, ..., xn outputs value 1.



Gerla’s jump operator

Definition
A tt-condition consists of an (x1 . . . xk) ∈ ω<ω and an α : 2k → 2.

A tt-condition is satisfied by A if α(A(x1) . . .A(xk)) = 1.

We set Att = {x | x is a tt-condition satisfied by A}.

Note Att ≤tt A and A ≤1 Att .

Definition (Gerla)

Jumps for

I (tt-degrees) Att = {x | ϕx(x)↓∈ Att}.

I (bounded tt-degrees of norm k ∈ ω)
Abk = {x | ϕx(x)↓∈ Att ∧ ϕx(x) ≤ k}.



Results on Gerla’s jump

Theorem (Gerla)

1. Att 6≤tt A. Abk 6≤bk A.

2. A ≤tt B ⇒ Att ≤1 Btt .

3. A <1 Abk ≤1 Ab(k+1) ≤1 Att ≤1 A′.

4. ∅bk ≡1 ∅tt ≡1 ∅′.

Theorem (Gerla)

If A is n-c.e. and B ≤1 Abk , then B is (nk + 1)-c.e.

Theorem (Anderson &Csima)

In general, Att ≤1 Ab, but there are many X s.t. X b 6≤bT Xtt .


