Computable copies of ℓ^p

Timothy H. McNicholl

Department of Mathematics lowa State University mcnichol@iastate.edu

Special Session on Computability Theory and Applications AMS Central Fall Sectional Meeting October 3, 2015

イロト イポト イヨト イヨト

э.

Timothy H. McNicholl

- Today I will discuss some contributions to a recent program (launched by Melnikov, Nies,Ng) that applies computable structure theory to computable analysis.
- Specifically, I will discuss the application of 'computable categoricity' to Banach spaces. (We only consider Banach spaces over C but all results are still true with C replaced by R.)
- All non-trivial Banach spaces are uncountable so the usual definitions from computable structure theory require some modification.
- To see how to do this, let's first discuss how to do computability on Banach spaces. There are two ingredients: generating sets and effective generating sets.

ヘロト ヘ戸ト ヘヨト ヘヨト

Suppose $\mathcal{B} = (V, +, \cdot, || ||)$ is a Banach space. Let $S \subseteq V$.

- £(S) := the linear span of S. £(S) = the closed linear span of S = the subspace generated by S.
- When K is a subfield of C, the span of S over K is

$$\mathcal{L}_{\mathcal{K}}(\mathcal{S}) = \left\{ \sum_{j=0}^{M} \alpha_{j} \mathbf{v}_{j} : \alpha_{0}, \dots, \alpha_{M} \in \mathcal{K} \land \mathbf{v}_{0}, \dots, \mathbf{v}_{M} \in \mathcal{S} \right\}$$

 $(\mathsf{So}\ \mathcal{L}(\mathcal{S}) = \mathcal{L}_{\mathbb{C}}(\mathcal{S}).)$

• *S* is a *generating set* for *B* if *V* is the closed linear span of *S*.

・ロト ・聞 ト ・ ヨト ・ ヨトー

An example

Suppose $1 \le p < \infty$.

Secall that ℓ^p is the set of all sequences of complex numbers {a_n}[∞]_{n=0} so that

$$\sum_{n=0}^{\infty}|a_n|^p<\infty.$$

2 ℓ^p is a Banach space under the norm

$$\|\{a_n\}_n\|_p = \left(\sum_{n=0}^{\infty} |a_n|^p\right)^{1/p}$$

Let e_n = the vector in ℓ^p whose (n + 1)st component is 1 and whose other components are 0. Let E = {e_n : n ∈ N}. Then, E is a generating set for ℓ^p. We call E the standard generating set for ℓ^p. E = default generating set.

Computability on Banach spaces: effective generating sets

Suppose $\mathcal{B} = (V, +, \cdot, || ||)$ is a Banach space. Let $F = \{f_0, f_1, \ldots\}$ be a generating set for \mathcal{B} .

- *F* is an *effective generating set* if || || is computable on $\mathcal{L}_{\mathbb{Q}(i)}(F)$. i.e. there is an algorithm that given $k \in \mathbb{N}$ and $f \in \mathcal{L}_{\mathbb{Q}(i)}(F)$ computes $q \in \mathbb{Q}$ so that $|q ||f||| < 2^{-k}$.
- Since || || is computable on L_{Q(i)}(F), this gives us a computable metric space. So concepts like 'computable vector (with respect to F)', 'computable operator with respect to (F₁, F₂)' etc. are now defined.
- If *F* is an effective generating set for *B*, then (*B*, *F*) is called a *computable Banach space*.

<ロ> (四) (四) (三) (三) (三) (三)

Suppose *p* is a computable real.

- Example: the standard generating set for l^p is an effective generating set. A vector is computable with respect to E if and only if it is a computable sequence of complex numbers.
- Another example: suppose $|\zeta| = 1$, and set

$$F = \{\zeta e_0, \zeta e_1, \ldots\}.$$

- Then, *F* is an effective generating set for ℓ^p .
- In addition, ζe₀ is computable with respect to *F*. (Even if ζ is incomputable!)
- The map $T : \ell^p \to \ell^p$ given by $T(f) = \zeta f$ is computable with respect to (E, F).

ヘロト 人間 とくほとく ほとう

Suppose \mathcal{B}_0 and \mathcal{B}_1 are Banach spaces.

- Recall that a map $T : \mathcal{B}_0 \to \mathcal{B}_1$ is an *isometry* if $||T(u) T(v)||_{\mathcal{B}_1} = ||u v||_{\mathcal{B}_0}$ whenever $u, v \in \mathcal{B}_0$.
- Isometries are one-to-one.
- If $T : \mathcal{B}_0 \to \mathcal{B}_1$ is linear, T is an isometry if and only if T preserves the norm. i.e. $||T(u)||_{\mathcal{B}_1} = ||u||_{\mathcal{B}_0}$ whenever $u \in \mathcal{B}_0$.
- B₀ and B₁ are 'identical' if there is a linear isometry of one onto the other. i.e. if they are *linearly isometric*.

ヘロト ヘアト ヘビト ヘビト

Definition (A.G. Melnikov 2013)

Suppose \mathcal{B} is a computable Banach space. \mathcal{B} is *computably categorical* if it is the case that whenever \mathcal{B}_0 and \mathcal{B}_1 are computable Banach spaces that are linearly isometric to \mathcal{B} , there is a computable linear isometry of \mathcal{B}_0 onto \mathcal{B}_1 .

Thus, \mathcal{B} is computably categorical if and only if it is the case that whenever F_0 and F_1 are effective generating sets for \mathcal{B} , there is an isometric endomorphism of \mathcal{B} that is computable with respect to (F_1, F_2) .

ヘロト ヘ戸ト ヘヨト ヘヨト

- Pour-El and Richards showed that l¹ is not computably categorical. i.e. there is a computable Banach space B that is linearly isometric to l¹ but not by any computable linear isometry.
- It follows from a recent result of Melnikov that ℓ^2 is computably categorical. Proof sketch: since ℓ^2 is a Hilbert space.
- Question (Melnikov): what about other values of *p*?

Theorem 1 (M. 2015)

Suppose p is a computable real so that $p \ge 1$ and $p \ne 2$. Suppose C is a c.e. set. Then, there is a computable copy of ℓ^p , \mathcal{B} , so that C computes a linear isometry of ℓ^p onto \mathcal{B} and so that any oracle that computes a linear isometry of ℓ^p onto \mathcal{B} must also compute C.

Corollary (M. 2015)

Suppose p is a computable real so that $p \ge 1$. Then, ℓ^p is computably categorical if and only if p = 2.

Theorem 2 (M. 2015)

Suppose p is a computable real so that $p \ge 1$, and suppose \mathcal{B}_0 and \mathcal{B}_1 are computable copies of ℓ^p . Then, the halting set computes a linear isometry of \mathcal{B}_0 onto \mathcal{B}_1 .

Theorem (Banach/Lamperti)

Suppose p is a real number so that $p \ge 1$ and $p \ne 2$. Let T be a linear map of ℓ^p into ℓ^p . Then, the following are equivalent.

- T is a surjective isometry.
- 2 There is a permutation of \mathbb{N} , ϕ , and a sequence of unimodular points, $\{\lambda_n\}_n$, so that $T(e_n) = \lambda_n e_{\phi(n)}$ for all n.

The proof of this theorem is based on the following.

Theorem (Banach/Lamperti)

Suppose p is a real number so that $p \ge 1$ and $p \ne 2$. If $T : \ell^p \to \ell^p$ is a linear isometry, then T preserves the 'disjoint support' relation. i.e. for all $f, g \in \ell^p$

 $\operatorname{supp}(f)\cap\operatorname{supp}(g)=\emptyset\ \Rightarrow\ \operatorname{supp}(T(f))\cap\operatorname{supp}(T(g))=\emptyset.$

ヘロン 人間 とくほ とくほ とう

Lamperti's proof of the latter theorem is based on the following.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem (Lamperti 1959)

Suppose $0 , and suppose <math>z, w \in \mathbb{C}$.

1 If
$$p < 2$$
, then $|z + w|^p + |z - w|^p \le 2|z|^p + 2|w|^p$.

2) If
$$p > 2$$
, then $|z + w|^p + |z - w|^p \ge 2|z|^p + 2|w|^p$.

In (1) and (2), equality holds if and only if zw = 0.

For the proof of Theorem 2, we use the following sharpening of Lamperti's inequalities. Let $c_p = |4 - 2\sqrt{2}^p|$.

Theorem 3 (M. 2015)

Suppose $0 , and suppose <math>z, w \in \mathbb{C}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Suppose *p* is a computable real so that $p \ge 1$ and $p \ne 2$. The proof uses a trick due to Pour-El and Richards and the Banach/Lamperti classification.

- Let C be a c.e. set. We assume C is infinite, and that $0 \notin C$.
- Let $\gamma = \sum_{k \in C} 2^{-k}$. Thus $0 < \gamma < 1$.
- Let {c_n}_{n∈ℕ} be a one-to-one effective enumeration of C.
 Set:

$$f_0 = (1 - \gamma)^{1/p} e_0 + \sum_{n=1}^{\infty} 2^{-c_{n-1}/p} e_n$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

$$f_{n+1} = e_{n+1}$$

 $F = \{f_0, f_1, \ldots\}$

- F is an effective generating set:
 - First note that $\|f_0\|_{\rho}^{\rho} = (1 \gamma) + \sum_{n=1}^{\infty} 2^{-c_{n-1}} = 1.$
 - When calculating $\|\sum_{j=0}^{M} \alpha_j f_j\|_{\rho}^{p}$, only finitely many of the terms in above sum are distorted.
 - If each α_j ∈ Q(i) we can calculate the effects of these distortions and so compute || Σ^M_{j=0} α_jf_j||^p_p.
 - Since *p* computable, we can then compute $\|\sum_{j=0}^{M} \alpha_j f_j\|_p$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Suppose an oracle *X* computes a surjective linear isometry $T : \ell^p \to \ell^p$ with respect to (E, F).

- By Banach/Lamperti *T*(*e_{j₀}*) = λ*e*₀ for some *j*₀ and unimodular λ.
- Since e_{j0} computable with respect to E, X computes λe₀ with respect to F.
- So from $k \in \mathbb{N}$, X can compute $f \in \mathcal{L}_{\mathbb{Q}(i)}(F)$ so that $\|\lambda e_0 f\|_p^p < 2^{-k}$.
- If $\|\lambda e_0 \sum_{j=0}^M \alpha_j f_j\|_p^p < 2^{-k}$, then $|\lambda \alpha_0(1-\gamma)^{1/p}|^p < 2^{-k}$, and so $|1 |\alpha_0|(1-\gamma)^{1/p}|^p < 2^{-k}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

So, since X computes T, X computes γ and so X computes C.

Finally, C computes the identity map with respect to (E, F).

Suppose *p* is a computable real so that $p \neq 2$ and $p \ge 1$. Suppose $F = \{f_0, f_1, \dots, \}$ is an effective generating set for ℓ^p . Using oracle \emptyset' we wish to build an isometric endomorphism *T* of ℓ^p that is computable with respect to (E, F).

- Define $T(e_0), T(e_1), \ldots$ so that they are disjointly supported unit vectors.
- 2 Ensure $f_j \in \overline{\mathcal{L}(T[E])}$ for each *j*.
- Solution T on ℓ^p via linear extension.
- $T(e_0), T(e_1), \ldots$ are defined by computable Cauchy sequences. \emptyset' is used to compute moduli of convergence.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Proof sketch Theorem 2

- Problem: with respect to F we can see norms of vectors but we can not see components of vectors. We use Theorem 3 to overcome this obstacle as follows.
- When $z, w \in \mathbb{C}$, let

$$\sigma_{p}(z,w) = c_{p}^{-1}||z+w|^{p} + |z-w|^{p} - 2|z|^{p} - 2|w|^{p}|.$$

Therefore zw = 0 if and only if $\sigma_p(z, w) = 0$ (by Lamperti's inequalities).

• When $f, g \in \ell^p$ let

$$\sigma_{\mathcal{P}}(f,g) = \sum_{j=0}^{\infty} \sigma_{\mathcal{P}}(f(j),g(j)).$$

Therefore, $\operatorname{supp}(f) \cap \operatorname{supp}(g) = \emptyset$ if and only if $\sigma_{\rho}(f, g) = 0$.

But, even more is true. The following is a consequence of Theorem 3.

Theorem (M. 2015)

Suppose $1 \le p < \infty$ and $p \ne 2$. Suppose $f, g \in \ell^p$. Then, there exist disjointly supported vectors $f_1, g_1 \in \ell^p$ so that

$$\max\{\|f_1 - f\|_{\rho}^{p}, \|g_1 - g\|_{\rho}^{p}\} \le \sigma_{\rho}(f, g).$$

This tells us how far we have to go from (f, g) to find a disjointly supported pair of vectors.

イロト イポト イヨト イヨト

Suppose *p* is a computable real so that $p \ge 1$.

- We have shown that ℓ^p is computably categorical if and only if p ≠ 2. The proof rests on the Banach/Lamperti characterization of the isometries of ℓ^p.
- Suppose p ≠ 2. Theorem 1 also entails that computing surjective linear isometries between computable copies of ℓ^p is at least as hard as computing the halting set.
- This is optimal: the halting set can compute a surjective linear isometry between any two computable copies of l^p.
- Question: If p ≠ 2 and c is a c.e. degree, then there are computable copies of l^p B₀ and B₁ so that c is the least powerful oracle that computes a linear isometry of B₀ onto B₁. Are there other degrees with this property?