Random graphs, finite extension constructions, and complexity

Jan Reimann, Penn State October 4, 2015

joint work with Cameron Freer, MIT

Homogeneous structures

- A countable (relational) structure \mathcal{M} is *homogeneous* if every isomorphism between finite substructures of \mathcal{M} extends to an automorphism of \mathcal{M} .
- **Fraissé**: Any homogeneous structure arises as a *amalgamation process* of finite structures over the same language (Fraissé limits).
- Examples:
 - **■** (ℚ, <),
 - the Rado (random) graph
 - the universal K_n -free graphs, $n \ge 3$ (Henson)

Randomized constructions

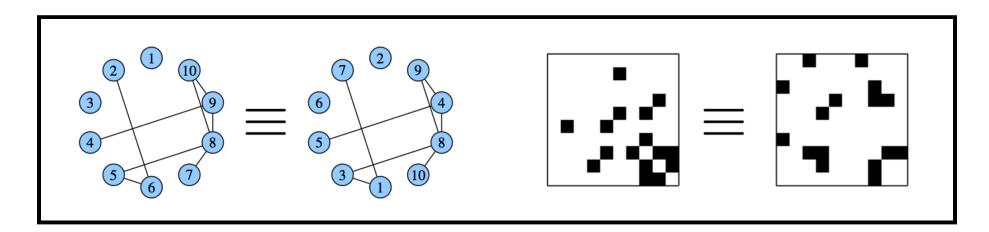
- Many homogeneous structures can obtained (almost surely) by adding new points according to a randomized process.
 - (\mathbb{Q} , <): add the n-th point between (or at the ends) of any existing point with uniform probability 1/n.
 - Rado graph: add the *n*-th vertex and connect to every previous vertex with probability *p* (uniformly and independently).
 - Vershik (2004): Urysohn space,
 Droste and Kuske (2003): universal poset
 - Henson graph: ??? (until 2008)

Constructions "from below"

- A naive approach to "randomize" the construction of the Henson graph would be as follows:
 - In the n-th step of the construction, pick a one-vertex extension uniformly among all possible extensions that preserve K_n -freeness.
- However: **Erdös, Kleitman, and Rothschild** (1976) showed that this asymptotically almost surely yields a bipartite graph (in fact, the *universal* countable bipartite graph).
 - The Henson graph(s), in contrast, has to contain C_5 and hence cannot be bipartite.

Symmetric constructions

- On the other hand, one could (degenerately) ensure that every triangle-free subgraph appears, and indeed witness all extension axioms, by deterministically building the Henson graph.
- But this violates symmetry: we would like the joint distribution of any distinct k-tuple to be the same as any other (i.e., exchangeability).



from Lloyd-Orbanz-Ghahramani-Roy (2012). Random function priors for exchangeable arrays

Tom Projet Orbaniz Grandaman Roy (2012), random random priors for exemangeable arrays

Symmetric constructions

- Is there an exchangeable construction of the Henson graph?
- Equivalently, is there a probability measure on graphs with vertex set ω that is concentrated on the isomorphism class of the Henson graph, and is invariant under the logic action of the symmetric group S_{∞} on the underlying set ω of vertices?

Constructions "from above"

- **Petrov and Vershik** (2010) showed how to construct universal K_n -free graphs probabilistically by *sampling* them from a continuous graph.
- Indeed every exchangeable structure in a countable language must arise in essentially this way, as shown by Aldous (1981) and Hoover (1979).
- These continuous graphs, known as **graphons**, have been studied extensively over the past decade.
 - See, for example the recent book by Lovasz, *Large* networks and graph limits (2012).

Graphons

- One basic motivation behind graphons is to capture the asymtotic behavior of growing sequences of dense graphs, e.g. with respect to subgraph densities.
- While the Rado graph can be seen as the limit object of a sequence (G_n) of finite random graphs, it does not distinguish between the distributions with which the edges are produced.
- For any $0 , <math>\mathbb{G}(n, p)$ "converges" almost surely to (an isomorphic copy of) the Rado graph.
 - However, if $p_1 \ll p_2$, $\mathbb{G}(n, p_1)$ will exhibit subgraph densities very different from $\mathbb{G}(n, p_2)$

Convergence

- Let (G_n) be a graph sequence with $|V(G_n)| \to \infty$.
- We say (G_n) converges if

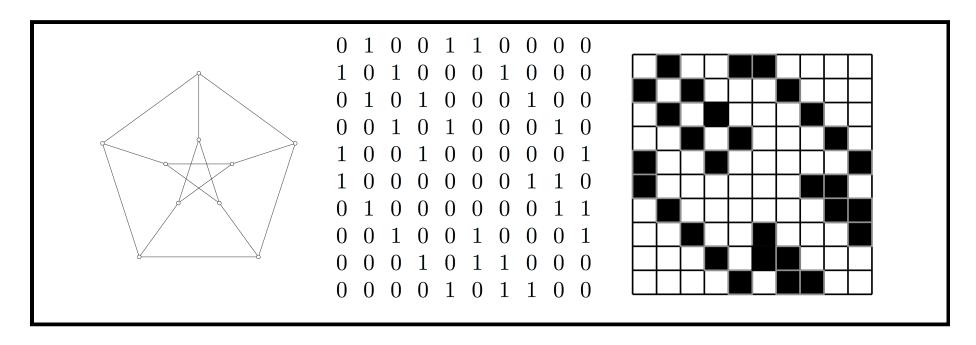
for every finite graph F, the relative number $t_i(F, G_n)$ of embeddings of F into G_n converges.

Graphons

- $W : [0, 1]^2 \to [0, 1]$ measurable, and for all x, y, W(x, x) = 0 and W(x, y) = W(y, x).
- Think: W(x, y) is the probability there is an edge between x and y.
- Subgraph densities:
 - edges: $\int W(x, y) dx dy$
 - triangles: $\int W(x,y)W(y,z)W(z,x) dx dy dz$
 - this can be generalized to define $t_i(F, W)$.

Graphons and graph limits

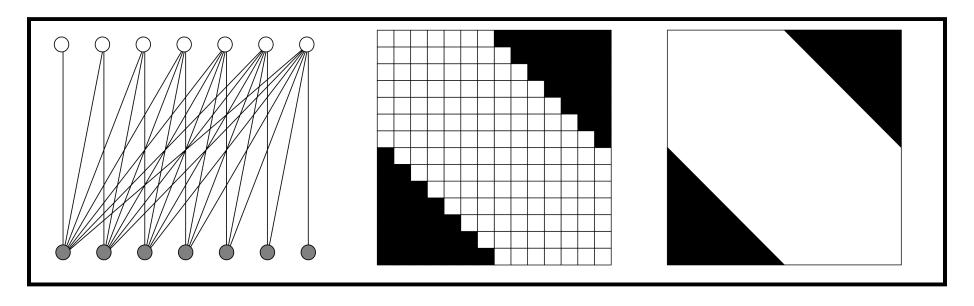
Basic idea: "pixel pictures"



from Lovasz (2012), Large networks and graph limits

Graphons and graph limits

Convergence of pixel pictures



from Lovasz (2012), Large networks and graph limits

Graphons and graph limits

Convergence of pixel pictures



from Lovasz (2012), Large networks and graph limits

The limit graphon

THM: For every convergent graph sequence (G_n) there exists (up to weak isomorphim) exactly one graphon W such that for all finite F:

$$t_i(F, G_n) \longrightarrow t_i(F, W).$$

Sampling from graphons

- We can obtain a finite graph $\mathbb{G}(n, W)$ from W by (independently) sampling n points x_1, \ldots, x_n from [0, 1] and filling edges according to probabilities $W(x_i, x_j)$.
 - almost surely, we get a sequence with $\mathbb{G}(n, W) \to W$.
- If we sample ω -many points from $W(x, y) \equiv 1/2$, we almost surely get the random graph.

The Petrov-Vershik graphon

- **Petrov and Vershik** (2010) constructed, for each $n \ge 3$, a graphon W such that we almost surely sample a Henson graph for n.
 - The graphons are (necessarily) {0,1}-valued.
 - Such graphons are called random-free.
 - The constructions resembles a finite extension construction with simple geometric forms, where each step satisfies a new type requiring attention.
 - The method can also be used to construct random-free graphons from which we sample the Rado graph.

Invariant measures

- The Petrov-Vershik graphon also yields a measure on the set of countable infinite graphs concentrating on the set of universal, homogeneous K_n -free graphs.
- This measure will be invariant under the "logic action", the natural action of S_{∞} on the space of countable (relational) structures with universe \mathbb{N} .
- This method was generalized by *Ackerman, Freer, and Patel* (2014) to other homogeneous structures.
- It can be used to define algorithmic randomness for such structures (as suggested by Nies and Fouché).

Universal graphons

• A random-free graphon is *countably universal* if for every set of distinct points from $[0, 1], x_1, x_2, ..., x_n, y_1, ..., y_m$, the intersection

$$\bigcap_{i,j} E_{x_i} \cap E_{y_j}^C$$

has non-empty interior.

- Here $E_x = \{y: W(x, y) = 1\}$ is the neighborhood of x.
- For *countably* K_n -free *universal* graphs, we require this to hold only for such tuples where the induced subgraph by the x_i has no induced K_{n-1} -subgraph,
 - also require that no n-tuples induce a K_n .

The topology of graphons

• Neighborhood distance:

$$r_W(x, y) = || W(x, .) - W(y, .) ||_1 = \int |W(x, z) - W(y, z)| dz$$

and mod out by $r_W(x, y) = 0$.

- Example: $W(x, y) \equiv p$ is a singleton space.
- THM: (Freer & R.) (informal) If W is a random-free universal graphon obtained via a "tame" extension method, then W is not compact in the r_W topology.

"Tame" extensions

• **DEF:** A random-free graphon *W* has *continuous realization of extensions* if there exists a function

$$f:(x_1,\ldots,x_n),(y_1,\ldots,y_m)\mapsto (l,r)$$

that is continuous a.e. such that for all \vec{x} , \vec{y} ,

$$[l,r] \subseteq \bigcap_{i,j} E_{x_i} \cap E_{y_j}^C.$$

- Here $E_x = \{y: W(x, y) = 1\}$ is the neighborhood of x.
- The Petrov-Vershik graphons have uniformly continuous realization of extensions.

Non-compactness

THM: If a countably $(K_n$ -free) universal graphon has uniformly continuous realization of extensions, then it is not compact in the r_W -topology.

Compactness of graphons

- This contrasts the following result due to Lovasz and Szegedy.
- **THM:** If a pure graphon (J, W) misses some signed bipartite graph F, then
 - (i) (J, r_W) is compact, and
 - (ii) has Minkowski dimension at most 10v(F).

Complexity of universal graphons

construction:	fully random	tame deterministic	general deterministic
complexity of graphon	low	high	?
	(singleton)	(not compact, infinite Minkowski dimension)	