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Homogeneous structures

* A countable (relational) structure M is homogeneous it
every isomorphism between finite substructures of M
extends to an automorphism of M.

e Fraissé: Any homogeneous structure arises as a
amalgamation process of finite structures over the same
language (Fraissé limits).

e Examples:

" (Q, <),
= the Rado (random) graph
® the universal K, -free graphs, n > 3 (Henson)



Randomized constructions

* Many homogeneous structures can obtained (almost
surely) by adding new points according to a randomized
process.

= (Q, <): add the n-th point between (or at the ends) of
any existing point with uniform probability 1/x.

= Rado graph: add the n-th vertex and connect to every
previous vertex with probability p (uniformly and
independently).

= Vershik (2004): Urysohn space,
Droste and Kuske (2003): universal poset

= Henson graph: ??? (until 2008)



Constructions "from below"

* A naive approach to "randomize" the construction of the
Henson graph would be as follows:

= In the n-th step of the construction, pick a one-vertex
extension uniformly among all possible extensions that
preserve K, -freeness.

e However: Erdos, Kleitman, and Rothschild (1976)
showed that this asymptotically almost surely yields a
bipartite graph (in fact, the universal countable bipartite

graph).

= The Henson graph(s), in contrast, has to contain Cs
and hence cannot be bipartite.



Symmetric constructions

® On the other hand, one could (degenerately) ensure that
every triangle-free subgraph appears, and indeed witness
all extension axioms, by deterministically building the
Henson graph.

* But this violates symmetry: we would like the joint
distribution of any distinct k-tuple to be the same as any
other (i.e., exchangeability).
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Symmetric constructions

* Is there an exchangeable construction of the Henson
graph?

e Equivalently, is there a probability measure on graphs
with vertex set w that is concentrated on the isomorphism
class of the Henson graph, and is invariant under the
logic action of the symmetric group S, on the underlying

set w of vertices?



Constructions "from above"

Petrov and Vershik (2010) showed how to construct
universal K, -free graphs probabilistically by sampling
them from a continuous graph.

Indeed every exchangeable structure in a countable
language must arise in essentially this way, as shown by

Aldous (1981) and Hoover (1979).

These continuous graphs, known as graphons, have been
studied extensively over the past decade.

m See, for example the recent book by Lovasz, Large
networks and graph limits (2012).



Graphons

One basic motivation behind graphons is to capture the
asymtotic behavior of growing sequences of dense
graphs, e.g. with respect to subgraph densities.

While the Rado graph can be seen as the limit object of a
sequence (G,,) of finite random graphs, it does not
distinguish between the distributions with which the
edges are produced.

Forany O < p < 1, G(n, p) "converges" almost surely to
(an isomorphic copy of) the Rado graph.

= However, if p; < p2, G(n, p1) will exhibit subgraph
densities very different from G(n, p>)



Convergence

* Let (G,) be a graph sequence with |V(G,)l = oo.
* We say (G,) converges it

for every finite graph F, the relative number
ti(F, Gy) of embeddings of F' into G,
converges.



Graphons

e W:[0,1]> - [0, 1] measurable, and for all x, y,
W(x,x) = 0and W(x,y) = W(y, x).
e Think: W(x, y) is the probability there is an edge between
x and y.

® Subgraph densities:

m edges: / W(x,y)dxdy
® triangles: f W, y)W(Q,2)W(z,x)dxdy dz
® this can be generalized to define #;(F, W).



Graphons and graph limits

Basic idea: "pixel pictures”
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from Lovasz (2012), Large networks and graph limits




Graphons and graph limits

Convergence of pixel pictures
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from Lovasz (2012), Large networks and graph limits




Graphons and graph limits

Convergence of pixel pictures

from Lovasz (2012), Large networks and graph limits



The limit graphon

THM: For every convergent graph sequence (G,,) there
exists (up to weak isomorphim) exactly one graphon W
such that for all finite F:

ti(F) Gn) — ti(F) W)



Sampling from graphons

* We can obtain a finite graph G(n, W) from W by
(independently) sampling n points x1, ..., x, from [0, 1]
and filling edges according to probabilities W(x;, x;).

= almost surely, we get a sequence with G(n, W) — W.

* If we sample w-many points from W(x,y) = 1/2, we
almost surely get the random graph.



The Petrov-Vershik graphon

e Petrov and Vershik (2010) constructed, for each n > 3, a
graphon W such that we almost surely sample a Henson
graph for n.

® The graphons are (necessarily) {0,1}-valued.
® Such graphons are called random-free.

= The constructions resembles a finite extension
construction with simple geometric forms, where each
step satisfies a new type requiring attention.

® The method can also be used to construct random-free
graphons from which we sample the Rado graph.



Invariant measures

® The Petrov-Vershik graphon also yields a measure on the
set of countable infinite graphs concentrating on the set of
universal, homogeneous K, -free graphs.

® This measure will be invariant under the "logic action”,
the natural action of S, on the space of countable
(relational) structures with universe N.

* This method was generalized by Ackerman, Freer, and Patel
(2014) to other homogeneous structures.

* It can be used to define algorithmic randomness for such
structures (as suggested by Nies and Fouche).



Universal graphons

* A random-free graphon is countably universal if for every

set of distinct points from [0, 1], x1,x2, ..., Xu, Y15 -+ » Ym,
the intersection
C
() Ex, nES
Lj

has non-empty interior.
m Here £, = {y: W(x,y) = 1} is the neighborhood of x.

® For countably K,,-free universal graphs, we require this to
hold only for such tuples where the induced subgraph by
the x; has no induced K,,_-subgraph,
" also require that no n-tuples induce a Kj,.



The topology of graphons

* Neighborhood distance:
) = [l W) = W) = [ 1Wek.2) - Wonolds
and mod out by ry(x,y) = 0.

e Example: W(x,y) = p is a singleton space.

e THM: (Freer & R.) (informal) If W is a random-free
universal graphon obtained via a "tame" extension
method, then W is not compact in the ry topology.



"Tame' extensions

* DEF: A random-free graphon W has continuous realization
of extensions if there exists a function

f : (’xla 9xn)9 ()’19 9ym) = (la r)
that is continuous a.e. such that for all X, y,

[L.r] € () Ex NES.
Ly
® Here E, = {y: W(x,y) = 1} is the neighborhood of x.

® The Petrov-Vershik graphons have uniformly continuous
realization of extensions.



Non-compactness

THM: If a countably (K, -free) universal

graphon has uniformly continuous realization
of extensions, then it is not compact in the

rw-topology.



Compactness of graphons
® This contrasts the following result due to Lovasz and
Szegedy.

e THM: If a pure graphon (J, W) misses some signed
bipartite graph F, then

(i) (J, rw) is compact, and
(ii) has Minkowski dimension at most 10v(F).



Complexity of universal graphons

construction: fully tame general
random deterministic deterministic
complexity  low high ?
of graphon
(singleton) (not compact,
infinite
Minkowski

dimension)



