RT^1_k , SRT^2_ℓ and \leq_{sc} reducibility

Reed Solomon University of Connecticut

(with Damir Dzhafarov, Ludovic Patey and Linda Brown Westrick)

 RT^1_k , SRT^2_ℓ and \leq_{sc} reducibility

 ▶
 <</td>
 ≥
 >
 ≥
 >
 ≥

Second order arithmetic: number and set variables, $+, \cdot, \leq \in, 0, 1$. Z_2 : PA⁻⁺ set induction + comprehension scheme. Models: $\mathcal{M} = (M, S_M, +_M, \cdots)$ with $S_M \subseteq \mathcal{P}(M)$. Project: Prove implications (or equivalences) between theorems (or subsystems) over a weak base theory. RCA₀: PA⁻ + Σ_1^0 induction + Δ_1^0 comprehension scheme. If $M = \omega$, \mathcal{M} is an ω -model and we identify it with $S \subseteq \mathcal{P}(\omega)$. An ω model satisfies PA⁻ and full induction. $(\omega, S) \models \mathsf{RCA}_0 \Leftrightarrow S \text{ closed under} \oplus \text{ and } \leq_{\mathcal{T}}.$ REC is the minimal ω -model.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q (や

Ramsey's theorem for singletons and induction

$$\begin{aligned} \mathsf{RT}_{k}^{1} : \forall f : \mathbb{N} \to k \exists X (X \text{ infinite } \land f \upharpoonright X \text{ constant}) \\ \mathsf{For all } k \in \omega, \ \mathsf{REC} \models \mathsf{RT}_{k}^{1} \text{ and } \mathsf{RCA}_{0} \vdash \mathsf{RT}_{k}^{1}. \\ \mathsf{RT}_{<\infty}^{1} : \forall k (\mathsf{RT}_{k}^{1}) \\ \mathsf{Again, } \mathsf{REC} \models \mathsf{RT}_{<\infty}^{1}. \end{aligned}$$

Theorem (Hirst)

Over RCA₀, RT¹_{$<\infty$} is equivalent to $B\Sigma_2^0$.

For any ω -model S of RCA₀, $S \models \mathsf{RT}^1_{<\infty}$. But $\mathsf{RCA}_0 \not\vdash \mathsf{RT}^1_{<\infty}$.

 RT^1_k , SRT^2_ℓ and \leq_{sc} reducibility

 ▶
 ▲
 ■
 ▶
 ▲
 ■
 ▶
 ■
 ●
 Q
 Q

 Reed Solomon University of Connecticut

COH

COH: For every sequence of sets $\langle R_i | i \in \mathbb{N} \rangle$, there is an infinite C s.t.

$$\forall i (C \subseteq^* R_i \lor C \subseteq^* \overline{R}_i)$$

You can think of COH as an infinite collection of RT¹₂ instances

$$f_i(x) = \begin{cases} 0 & \text{if } x \in \overline{R}_i \\ 1 & \text{if } x \in R_i \end{cases}$$

to solve simultaneously but each allowing finitely many errors. Or as an infinite collection of RT^1_4 instances

$$f_{i}(x) = \begin{cases} 0 & \text{if } x \in \overline{R}_{2i} \cap \overline{R}_{2i+1} \\ 1 & \text{if } x \in \overline{R}_{2i} \cap R_{2i+1} \\ 2 & \text{if } x \in R_{2i} \cap \overline{R}_{2i+1} \\ 3 & \text{if } x \in R_{2i} \cap R_{2i+1} \end{cases}$$

 RT^1_k , SRT^2_ℓ and \leq_{sc} reducibility

Reed Solomon University of Connecticut

$\mathsf{RT}_2^2\text{, }\mathsf{SRT}_2^2\text{ and }\mathsf{D}_2^2$

Let $f : [\mathbb{N}]^2 \to 2$. *H* is homogeneous for *f* if $f \upharpoonright [H]^2$ is constant.

 RT_2^2 : $\forall f : [\mathbb{N}]^2 \to 2 \exists H (H \text{ is infinite and homogenous})$

(RT₂² can be proved using $\omega + 1$ successive applications of RT₂¹.) We say f is stable if $\lim_{y} f(x, y)$ exists for every x.

 SRT_2^2 : \forall stable $f : [\mathbb{N}]^2 \rightarrow 2 \exists H (H \text{ is infinite and homogenous})$

We say *H* is limit-homogeneous for a stable *f* if there is a color *i* such that $\lim_{y} f(x, y) = i$ for every $x \in H$.

 D_2^2 : \forall stable $f : [\mathbb{N}]^2 \to 2 \exists H(H \text{ is infinite and limit homogenous})$

Connecting D_2^2 , RT_2^2 , SRT_2^2 and COH

- D_2^2 is equivalent to SRT_2^2 over $\mathsf{RCA}_0 + B\Sigma_2^0$.
- (Cholak, Jockusch and Slaman) RT_2^2 is equivalent to $SRT_2^2 + COH$ over RCA_0 . COH does not imply RT_2^2 over RCA_0 (for induction reasons).
- (Hirschfeldt and Shore) There is an ω -model of RCA₀ + COH which does not satisfy RT₂².
- (Chong, Slaman and Yang) There is a nonstandard model of $RCA_0 + SRT_2^2$ which is not a model of RT_2^2 .
- Question: Does SRT_2^2 imply RT_2^2 on ω -models of RCA_0 ?

$\omega\text{-reducibility}$

Let *P* be a true Π_2^1 sentence of the form

$$\forall X \left(\varphi(X) \to \exists \widehat{X} \psi(X, \widehat{X}) \right)$$

where φ and ψ are arithmetic statements. We refer to an X such that $\varphi(X)$ as a *P*-instance and we refer to the corresponding witnesses \hat{X} such that $\psi(X, \hat{X})$ as solutions to X.

Given two principles of this form P and Q, rather than asking if $RCA_0 \vdash Q \rightarrow P$, we ask how they compare on ω models.

 $P \leq_{\omega} Q \Leftrightarrow \forall \text{ Turing ideal } S (S \models Q \rightarrow S \models P)$ $\Leftrightarrow \text{ every } \omega \text{-model of } \mathsf{RCA}_0 + Q \text{ is an } \omega \text{-model of } \mathsf{RCA}_0 + P$

Question: Does $RT_2^2 \leq_{\omega} SRT_2^2$? Does $COH \leq_{\omega} SRT_2^2$?

 RT^1_k , SRT^2_ℓ and \leq_{sc} reducibility

 $P \leq_c Q \Leftrightarrow$ for every *P*-instance *X*, there is a *Q*-instance $Y \leq_T X$ such that for every solution \widehat{Y} of *Y*, there is a solution \widehat{X} of *X* with $\widehat{X} \leq_T X \oplus \widehat{Y}$.

 RT^1_k , SRT^2_ℓ and \leq_{sc} reducibility

Reed Solomon University of Connecticut

伺 と く ヨ と く ヨ と

Example 1

 $\mathsf{SRT}_2^2 \leq_c \mathsf{D}_2^2$

Given an SRT₂² instance $f : [\omega]^2 \to 2$, we view f as a D₂² instance. Let H be an infinite limit-homogeneous set for f with color i. We thin H to a homogeneous set:

- Set h_0 = the least element of H.
- Let h_{n+1} = the least element $x \in H$ such that $x > h_n$ and $f(h_m, x) = i$ for all $m \le n$.
- The set $\{h_0, h_1, \ldots\}$ is homogeneous for f.

This procedure uses both the D_2^2 solution H and the SRT_2^2 instance f to compute the SRT_2^2 solution to f.

 $P \leq_{sc} Q \Leftrightarrow$ for every *P*-instance *X*, there is a *Q*-instance $Y \leq_T X$ such that for every solution \widehat{Y} of *Y*, there is a solution \widehat{X} of *X* with $\widehat{X} \leq_T \widehat{Y}$.

 ►
 ▲
 ■
 ►
 ■
 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●

 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 <td

Example 2

 $\mathsf{RT}^1_{<\infty} \leq_{\mathit{sc}} \mathsf{RT}^2_2$

Given $f: \omega \to k$. Define *f*-computable coloring $g: [\omega]^2 \to 2$

$$g(x,y) = \begin{cases} 0 & \text{if } f(x) = f(y) \\ 1 & \text{if } f(x) \neq f(y) \end{cases}$$

Let *H* be an infinite homogeneous set for *H*. We must have $g \upharpoonright [H]^2 = 0$, so *H* is homogeneous for *f* as well.

Once we have RT_2^2 solution H, we do not need to use $RT_{<\infty}^1$ instance f to help compute $RT_{<\infty}^1$ solution.

Example 3

 $\mathsf{RT}^1_k \leq_{\mathit{sc}} \mathsf{D}^2_k \leq_{\mathit{sc}} \mathsf{SRT}^2_k$

Given $f: \omega \to k$. Define *f*-computable coloring $g: [\omega]^2 \to k$ by g(x, y) = f(x). The coloring g is stable and any limit-homogeneous set for g is monochromatic for f.

Theorem (Dzhafarov)

- $\mathsf{SRT}_2^2 \not\leq_{\mathit{sc}} \mathsf{D}_2^2$ and in fact $\mathsf{SRT}_2^2 \not\leq_{\mathit{sc}} \mathsf{D}_{<\infty}^2$
- COH ≰_{sc} SRT₂²

伺 と く ヨ と く ヨ と

A list of questions from Hirschfeldt, Jockusch and Dzhafarov:

- **1** Motivating Question: Does $RT_2^2 \leq_{\omega} SRT_2^2$? Does $COH \leq_{\omega} SRT_2^2$?
- **2** Does COH \leq_c SRT₂²?
- **3** Does $\mathsf{RT}_3^1 \leq_{sc} \mathsf{SRT}_2^2$?
- **4** Does $\mathsf{RT}_k^1 \leq_{sc} \mathsf{SRT}_\ell^2$ when $k < \ell$?
- **5** Does COH $\leq_{sc} SRT^2_{\ell}$ for $\ell > 2$? Does COH $\leq_{sc} SRT^2_{<\infty}$?

Theorem (Dzhafarov, Patey, Solomon and Westrick)

- If $k > \ell$, then $\mathrm{RT}_k^1 \not\leq_{sc} \mathrm{SRT}_\ell^2$.
- COH $\not\leq_{sc} SRT^2_{<\infty}$ (almost certainly).

Thank you!

 RT^1_k , SRT^2_ℓ and \leq_{sc} reducibility

Reed Solomon University of Connecticut

æ

<ロ> <同> <同> < 同> < 同>