Defining the jump classes in the local structure of the enumeration degrees

Mariya I. Soskova¹

Sofia University

AMS Sectional Meeting, Loyola University Chicago Special Session on Computability Theory and Applications

¹Supported by Sofia University Science Fund project 81/2015.

A quick reminder

Definition

 $A \leq_e B$ if there is a c.e. set W, such that

 $A = W(B) = \left\{ x \mid \exists D(\langle x, D \rangle \in W \& D \subseteq B) \right\}.$

- The enumeration degree of a set A is $d_e(A) = \{B \mid A \leq_e B \& B \leq_e A\}.$
- $d_e(A) \le d_e(B)$ iff $A \le_e B$.
- The least element: $\mathbf{0}_{\mathbf{e}}$ is the set of all c.e. sets.
- The least upper bound: $d_e(A) \lor d_e(B) = d_e(A \oplus B)$.
- The enumeration jump: $d_e(A)' = d_e(K_A \oplus \overline{K_A})$, where $K_A = \{ \langle e, x \rangle \mid x \in W_e(A) \}.$

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$$(\mathcal{D}_T, \leq_T, \lor, ', \mathbf{0}_T) \cong (\mathcal{TOT}, \leq_e, \lor, ', \mathbf{0}_e) \subseteq (\mathcal{D}_e, \leq_e, \lor, ', \mathbf{0}_e)$$

The importance of definability

Theorem (Slaman, Woodin)

The following are equivalent for $\mathcal{D} \in {\mathcal{D}_T, \mathcal{D}_e}$:

- **1** \mathcal{D} is rigid, i.e. has no nontrivial automorphisms.
- The definable relations in D are the ones induced by degree-invariant definable relations on sets in Second Order Arithmetic.
- O *D* is biinterpretable with Second Order Arithmetic.

Definability in the enumeration degrees

Theorem (Kalimullin)

The enumeration jump is definable in \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S) The total enumeration degrees are first order definable in \mathcal{D}_e .

Theorem (Cai, Ganchev, Lempp, Miller, S) The image of the relation "c.e. in" under the standard embedding of \mathcal{D}_e in \mathcal{D}_T is first order definable in \mathcal{D}_e . \mathcal{K} -pairs

Definition

A pair of sets A and B are a \mathcal{K} -pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

For example if $L_A = \{ \sigma \in 2^{<\omega} \mid \sigma \leq_{lex} A \}$ and $R_A = \overline{L_A}$ then

•
$$L_A \leq_e A \text{ (and } R_A \leq_e \overline{A} \text{);}$$

- L_A and R_A are a K-pair via $W = \{ \langle \sigma, \tau \rangle \mid \sigma \leq_{lex} \tau \}.$

Theorem (Kalimullin)

A and B are a \mathcal{K} -pair if and only if $d_e(A) = \mathbf{a}$ and $d_e(B) = \mathbf{b}$ satisfy:

 $\forall \mathbf{x}(\mathbf{x} = (\mathbf{a} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{x})).$

Local and global structural interaction

Theorem (Slaman, S)

The structure of the enumeration degrees is rigid if any of the following structures are:

- **()** The structure \mathcal{R} of the c.e. Turing degrees.
- **2** The structure $\mathcal{D}_T(\leq \mathbf{0}')$ of the Δ_2^0 Turing degrees.
- **③** The structure $\mathcal{D}_e(\leq \mathbf{0}'_e)$ of the Σ_2^0 enumeration degrees.

Definability in $\mathcal{D}_e(\leq \mathbf{0}'_e)$

Theorem (Ganchev, S)

 \mathcal{K} -pairs are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e) \dots$

Theorem (Cai, Lempp, Miller, S)

... by the same first order formula as in \mathcal{D}_e .

Theorem (Ganchev, S)

- The total enumeration degrees are definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.
- **2** The Low₁ enumeration degrees are definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Corollary (Shore)

The Low_{n+1} and High_n total enumeration degrees are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

Total degrees in the local structure

Theorem (Selman)

 $\mathbf{a} \leq \mathbf{b}$ if and only if every total e-degree above \mathbf{b} is above \mathbf{a} .

To what extent do the total enumeration degrees determine $\mathcal{D}_e(\leq \mathbf{0}'_e)$?

Selman's theorem is not true locally: there are degrees $\mathbf{a} < \mathbf{0}'_e$ such that the only total enumeration degree in $\mathcal{D}_e (\leq \mathbf{0}'_e)$ above them is $\mathbf{0}'_e$.

Theorem (Soskov)

For every $\mathbf{a} \in \mathcal{D}_e$ there is a total $\mathbf{f} \geq \mathbf{a}$ such that $\mathbf{a}' = \mathbf{f}'$.

Is Soskov's jump inversion theorem true locally?

If it is true, then the jump classes would be fully definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$:

 $\mathbf{a} \in \operatorname{Low}_{n+1}$ if and only if there is a total $\mathbf{f} \geq \mathbf{a}$, such that $\mathbf{f} \in \operatorname{Low}_{n+1}$

 $\mathbf{a} \in \operatorname{High}_n$ if and only if every total $\mathbf{f} \geq \mathbf{a}$ are in High_n

Getting around the difficult question

Theorem (Ganchev, S)

For every nonzero degree $\mathbf{a} \leq \mathbf{0}'_e$ bounds a nonzero degree for which Soskov's jump inversion holds locally. For every nonzero degree $\mathbf{a} \leq_e \mathbf{0}'_e$ there is a nonzero degree $\mathbf{b} \leq \mathbf{a}$ and a total \mathbf{f} , such that:

$$\mathbf{0} \ \mathbf{b} \leq \mathbf{f}.$$

$$earline{0} b' = f'.$$

Theorem (Ganchev, Sorbi)

Every nonzero enumeration degree a bounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump as a.

Defining the jump classes in $\mathcal{D}_e(\leq \mathbf{0}'_e)$

Theorem (Ganchev, S)

All jump classes are first order definable in $\mathcal{D}_e(\leq \mathbf{0}'_e)$.

 $\mathbf{a} \in \text{Low}_{n+1}$ if and only if

for every nonzero $\mathbf{b} \leq \mathbf{a}$

there is a nonzero $\mathbf{x} \leq \mathbf{b}$ and a total

 $f \ge x$, such that $f \in Low_{n+1}$.

 $\mathbf{a} \in \operatorname{High}_n$ if and only if

there is a nonzero $\mathbf{b} \leq \mathbf{a}$ such that

for every nonzero $\mathbf{x} \leq \mathbf{b}$ all total $\mathbf{f} \geq \mathbf{x}$ are in High_n.

Proof flavor

Theorem (Ganchev, S)

For every nonzero degree $\mathbf{a} \leq \mathbf{0}'_e$ bounds a nonzero degree for which Soskov's jump inversion hold locally.

Proof flavor:

Infinite injury construction, borrowing ideas from 'Sacks Jump inversion', 'Good approximations of Σ_2^0 sets', 'The ability to "dump" elements in a constructed set $B = \Gamma(A)$ when they are not needed anymore'.

Theorem (Ganchev, Sorbi)

Every nonzero enumeration degree a bounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump as a.

Proof flavor: K-pairs.

Jumps of \mathcal{K} -pairs

Lemma (Kalimullin)

If A and B are a \mathcal{K} -pair and neither A or B are c.e. then:

• If
$$C \leq_e A$$
 then C and B are a \mathcal{K} -pair.

 $a \leq_e \overline{B} \leq_e A \oplus \emptyset'.$

If A and B are a nontrivial \mathcal{K} -pair then

$$A' = K_A \oplus \overline{K_A} \leq_e A \oplus (B \oplus \emptyset') \leq_e A \oplus \overline{A} \oplus \emptyset' \leq_e A'.$$

So $A' \equiv_e A \oplus B \oplus \emptyset'$. Similarly $B' \equiv_e A \oplus B \oplus \emptyset'$.

If $C \leq_e A$ and C is not c.e. then $C' \equiv_e B' \equiv_e A'$.

Finally consider an arbitrary non-low set A and the corresponding set L_{K_A} .

•
$$L_{K_A} \leq_e K_A \equiv_e A;$$

• $L'_{K_A} \equiv_e L_{K_A} \oplus R_{K_A} \oplus \emptyset' \equiv_e K_A \oplus \overline{K_A} = A'.$

Thank you!