Ultraproducts	Properties of Ultraproducts	The Analogy	Examples

Computable Information from Ultraproducts

Henry Towsner

University of Pennsylvania

October 3, 2015

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
00			

The ultraproduct construction takes an sequence of first-order structures \mathfrak{M}_i and a non-principal ultrafilter \mathcal{U} and constructs a limiting object

$$\lim_{i\to\mathcal{U}}\mathfrak{M}_i=\mathfrak{M}^{\mathcal{U}}.$$

Ultraproducts F	Properties of Ultraproducts	The Analogy	Examples
0• (00000	000	0000000

- Functional analysis,
- Commutative algebra,
- Ergodic theory,
- Combinatorics.

Ultraproducts P	Properties of Ultraproducts	The Analogy	Examples
00 0	00000	000	0000000

- Functional analysis,
- Commutative algebra,
- Ergodic theory,
- Combinatorics.

In various settings, proofs using ultraproducts have been criticized for:

• Foundational concerns

Ultraproducts Properties of Ultraproducts		Examples
00 0000	000	0000000

- Functional analysis,
- Commutative algebra,
- Ergodic theory,
- Combinatorics.

In various settings, proofs using ultraproducts have been criticized for:

• Foundational concerns/the use of a non-canonical construction,

Ultraproducts Properties of Ultraproducts		Examples
00 0000	000	0000000

- Functional analysis,
- Commutative algebra,
- Ergodic theory,
- Combinatorics.

In various settings, proofs using ultraproducts have been criticized for:

- Foundational concerns/the use of a non-canonical construction,
- Being non-constructive,

Ultraproducts Properties of Ultraproducts		Examples
00 0000	000	0000000

- Functional analysis,
- Commutative algebra,
- Ergodic theory,
- Combinatorics.

In various settings, proofs using ultraproducts have been criticized for:

- Foundational concerns/the use of a non-canonical construction,
- Being non-constructive,
- Obscuring the real content of the proof.

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
00	●0000	000	0000000

Usually the power of the ultraproduct technique comes from the fact that the ultraproduct is a (maybe very large) object of the kind we're studying.

Question

What determines the properties of the ultraproduct?

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
00	00000	000	0000000

Usually the power of the ultraproduct technique comes from the fact that the ultraproduct is a (maybe very large) object of the kind we're studying.

Question

What determines the properties of the ultraproduct?

There is a great deal of work by Keisler and others on how different choices of ultrafilter affects the saturation properties of ultraproduct.

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
00	00000	000	0000000

Usually the power of the ultraproduct technique comes from the fact that the ultraproduct is a (maybe very large) object of the kind we're studying.

Question

What determines the properties of the ultraproduct?

There is a great deal of work by Keisler and others on how different choices of ultrafilter affects the saturation properties of ultraproduct.

But every proof in the literture uses an essentially arbitrary ultrafilter. So the choice of ultrafilter doesn't matter—everything that matters about the ultraproduct must be a consequence of the properties of the original structures.

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
	0000		

The first order properties of an ultraproduct are determined by

Theorem (Łoś's Theorem)

If σ is a sentence of first-order logic, \mathfrak{M} satisfies σ iff for almost every *i*, \mathfrak{M}_i satisfies σ .

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
	0000		

The first order properties of an ultraproduct are determined by

Theorem (Łoś's Theorem)

If σ is a sentence of first-order logic, \mathfrak{M} satisfies σ iff for almost every *i*, \mathfrak{M}_i satisfies σ .

Any proof making non-trivial use of ultraproducts must make use of properties beyond those controlled by Łoś's Theorem.

Properties of Ultraproducts	The Analogy 000	Examples 0000000

To express the properties we are actually interested in, we need a multi-sorted language. We need to distinguish between *internal* and *external* sorts.

Internal sorts get interpreted based on the model we are discussing.

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
	00000		

To express the properties we are actually interested in, we need a multi-sorted language. We need to distinguish between *internal* and *external* sorts.

Internal sorts get interpreted based on the model we are discussing.

External sorts have a *fixed* interpretation. In particular, we are allowed to quantify over natural numbers, functions on natural numbers, and so on.

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
	00000		

To express the properties we are actually interested in, we need a multi-sorted language. We need to distinguish between *internal* and *external* sorts.

Internal sorts get interpreted based on the model we are discussing.

External sorts have a *fixed* interpretation. In particular, we are allowed to quantify over natural numbers, functions on natural numbers, and so on.

We will write \exists^{ex} or \forall^{ex} to indicate external quantifiers, and \exists, \forall to indicate internal quantifiers.

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
	00000		

Definition

A formula ϕ is *internal* if it contains only internal quantifiers.

A Σ_1^{ex} statement is a statement of the form $\exists^{ex} n \phi(n)$ where ϕ is internal.

Theorem

 $\mathfrak{M}^{\mathcal{U}}$ satisfies a Σ_{1}^{ex} statement $\exists^{ex} n \phi(n)$ if any only if almost every \mathfrak{M}_{i} satisfies $\exists^{ex} n \phi(n)$ uniformly.

That is, there is an *n* so that almost every \mathfrak{M}_i satisfies $\phi(n)$.

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
	00000		

Definition

A Π_2^{ex} statement is a statement of the form $\forall^{ex} m \exists^{ex} n \phi(n, m)$ where ϕ is internal.

Theorem (Transfer Theorem)

 $\mathfrak{M}^{\mathcal{U}}$ satisfies a Π_2^{ex} statement $\forall^{ex} m \exists^{ex} n \phi(m, n)$ if and only if for each m there is an n so that almost every \mathfrak{M}_i satisfies $\phi(m, n)$.

Properties of Ultraproducts	The Analogy	
00000		

Definition

A Π_2^{ex} statement is a statement of the form $\forall^{ex} m \exists^{ex} n \phi(n, m)$ where ϕ is internal.

Theorem (Transfer Theorem)

 $\mathfrak{M}^{\mathcal{U}}$ satisfies a Π_2^{ex} statement $\forall^{ex} m \exists^{ex} n \phi(m, n)$ if and only if for each m there is an n so that almost every \mathfrak{M}_i satisfies $\phi(m, n)$.

Most applications of ultraproducts in the literature (to problems not involving ultraproducts) conclude by showing that the ultraproduct satisfies a Π_2^{ex} statement. Note that when $\mathfrak{M}_i = \mathfrak{M}$ for a fixed structure, this implies that Π_2^{ex} statements hold in \mathfrak{M} iff they hold in $\mathfrak{M}^{\mathcal{U}}$.

If a proof using an ultraproduct consists entirely of Π_2^{ex} statements, we could replace each statement with the corresponding uniform statement about the original structures.

Properties of Ultraproducts	The Analogy	Examples
00000	●00	0000000

We make the obvious analogy between Π_2^{ex} statements and Π_2 statements. If a proof consists entirely of Π_2 statements, it has computable bounds.

Properties of Ultraproducts	The Analogy	Examples
00000	●00	0000000

We make the obvious analogy between Π_2^{ex} statements and Π_2 statements. If a proof consists entirely of Π_2 statements, it has computable bounds.

If a proof has intermediate steps which are not Π_2 , the functional interpretation lets us extract the computable information from these intermediate steps.

Properties of Ultraproducts	The Analogy	
	000	

Various results have generalized this to other " Π_2 -like" statements:

- Hernest (distinction between internal and external quantifiers),
- Avigad-Towsner (ordinal bounds),
- van den Berg-Briseid-Safarik (standard data from nonstandard proofs),
- Sanders (standard data from nonstandard proofs).

Properties of Ultraproducts	The Analogy	Examples
00000	○○●	0000000

A modification of the functional interpretation gives us a transformation on statements with the following properties:

- σ is Π_2^{ex} then σ^T is equivalent to σ ,
- if σ implies τ then σ^T implies τ^T ,
- σ^T is Π_2^{ex} (where the quantifiers may be over higher-order functionals).

Properties of Ultraproducts	The Analogy	Examples
00000	00●	0000000

A modification of the functional interpretation gives us a transformation on statements with the following properties:

- σ is Π_2^{ex} then σ^T is equivalent to σ ,
- if σ implies τ then σ^T implies τ^T ,
- σ^T is Π_2^{ex} (where the quantifiers may be over higher-order functionals).

Therefore, given a proof using ultraproducts, we can do the following:

- list the lemmas in the proof, $\sigma_1, \sigma_2, \ldots, \sigma_k$,
- replace each lemma σ_i with the corresponding σ_i^T ,
- conclude that each σ_i^T holds uniformly in the ground models,
- translate the proof that σ_i implies σ_{i+1} into a proof that uniform bounds on σ_i^T imply uniform bounds on σ_{i+1}^T,
- the conclusion is a constructive, ultraproduct-free proof of σ_k .

Properties of Ultraproducts	The Analogy	Examples
00000	000	●000000

The best known example is convergence: the statement that a sequence a_n converges is Π_3^{ex} :

$$\forall^{ex} \epsilon > 0 \exists^{ex} n \forall^{ex} m \ge n |a_n - a_m| < \epsilon.$$

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
			•000000

The best known example is convergence: the statement that a sequence a_n converges is Π_3^{ex} :

$$\forall^{ex} \epsilon > 0 \exists^{ex} n \forall^{ex} m \ge n |a_n - a_m| < \epsilon.$$

The functional interpretation tells us that the sequence converges in the ultraproduct if it converges *uniformly metastably* in the original models:

For every $\epsilon > 0$ and every function $F : \mathbb{N} \to \mathbb{N}$, there is an *n* so that, for almost every *i*, $\mathfrak{M}_i \models |a_n - a_{F(n)}| < \epsilon$.

Properties of Ultraproducts	The Analogy 000	Examples 0●00000

The Gilmore-Robinson characterization of Hilbertian fields says that a field k with characteristic 0 is Hilbertian if

There is a
$$t \in k^{\mathcal{U}}$$
 such that $\overline{k(t)} \cap k^{\mathcal{U}} = k(t)$.

This has the form

$$\exists t \forall^{ex} p \exists^{ex} U \cdots$$

Ultraproducts	Properties of Ultraproducts	The Analogy	Examples
00	00000	000	000000

The functional interpretation tells us a characteristic 0 field is Hilbertian iff

There are functions

- $U: \mathcal{P}_{fin}(k) \times \mathbb{N} \to \mathcal{P}_{fin}(k)$, and
- $D: \mathcal{P}_{fin}(k) \times \mathbb{N} \to \mathbb{N}$

such that for any finite sets $S, T \subseteq k$ and any natural number b, there is a $t \in k \setminus T$ so that for each $S_0 \subseteq S$ and $b_0 \leq b$, whenever $p \in k[x]$ such that

- the degree of p is at most b_0
- each coefficient in p has the forum $\sum_{i \le b_0} a_i t^{c_i}$ where $a_i \in S_0$ and $|c_i| \le b_0$,

then if p has a root in k, p has a root of the form $\sum_{i \leq D(S_0, b_0)} a_i t^{c_i}$ where $a_i \in U(S_0, b_0)$ and $c_i \leq D(S_0, b_0)$.

Properties of Ultraproducts	The Analogy	Examples
00000	000	000●000

A theorem from functional analysis depends on applying the following theorem in an ultraproduct:

Theorem

Let $(f_n)_n$ and $(g_p)_p$ be sequences of L^1 functions such that

- The sequences $(f_n)_n$ and $(g_p)_p$ converge weakly,
- For each p, $(f_ng_p)_n$ converges weakly,
- For each n, $(f_ng_p)_p$ converges weakly.

Then $\lim_{p \to \infty} \lim_{p \to \infty} (f_n g_p)$ and $\lim_{p \to \infty} \lim_{n \to \infty} (f_n g_p)$ converge weakly to the same function.

Properties of Ultraproducts	The Analogy	Examples
00000	000	0000●00

The functional interpretation tells us that the corresponding finite structures must uniformly satisfy, for certain sequences of functions f_n, g_p :

For every $\epsilon > 0$, p, n, K, R and any set A, there are $m \ge n$, $q \ge p$, L, and S so that

 $|(f_mg_{S(K(m,q,L,S),R(m,q,L,S))}(A)) - (f_{L(K(m,q,L,S),R(m,q,L,S))}g_q)(A)| < \epsilon.$

Properties of Ultraproducts	The Analogy	Examples
00000	000	00000●0

• Ultraproducts are non-canonical, but proofs that use ultraproducts do not make real use of this,

Properties of Ultraproducts	The Analogy	Examples
00000	000	00000●0

- Ultraproducts are non-canonical, but proofs that use ultraproducts do not make real use of this,
- Ultraproduct proofs contain all the information needed to calculate constructive bounds,

Properties of Ultraproducts	The Analogy	Examples
00000	000	00000●0

- Ultraproducts are non-canonical, but proofs that use ultraproducts do not make real use of this,
- Ultraproduct proofs contain all the information needed to calculate constructive bounds,
- We know exactly what ultraproducts do in a proof: they describe the uniformity of bounds in a convenient way.

Properties of Ultraproducts	The Analogy	Examples
00000	000	000000●

• The analogy between computable information and ultraproduct information is strong from a proof-theoretic perspective. What about from a computability theoretic perspective?

Properties of Ultraproducts	The Analogy	Examples
00000	000	000000●

- The analogy between computable information and ultraproduct information is strong from a proof-theoretic perspective. What about from a computability theoretic perspective?
- Besides computable, hyperarithmetic, and standard/ground-model information, are there other kinds of information which have the same behavior?