Elementarity of Subgroups of Profinite Permutation Groups via Tree Presentations

Jason Block

AMS Special Session on Computability Theory IV

1/15

Profinite Groups

A topological group is called profinite if it is isomorphic to the inverse limit of an inverse system of discrete finite groups.

Examples:

- Finite groups
- Direct products of finite groups
- The *p*-adic integers \mathbb{Z}_p under addition
- Absolute Galois groups

In [2], R. Miller investigated the absolute Galois group of \mathbb{Q} (that is, Aut $(\overline{\mathbb{Q}})$) viewed as a subgroup of S_{ω} (the group of permutations of \mathbb{N}).

Approach

- Although S_ω is size continuum, both it and its closed subgroups can be presented as the set of paths through a countable tree.
- The subgroups of S_ω that can be presented this way with finite branching trees are exactly the profinite ones.
- We can use these presentations to find the complexities of the theories of profinite *G* as well as see to what degree certain countable subgroups of *G* will be elementary subgroups.

Tree Presentations

Definition

Let *G* be a subgroup of S_{ω} . We define the tree T_G to be the subtree of $\mathbb{N}^{<\omega}$ containing all initial segments of elements of *G*. That is,

 $T_{G} := \{ \tau \in \mathbb{N}^{<\omega} : (\exists g \in G, n \in \mathbb{N}) [\tau = g(0)g(1) \cdots g(n)] \}$

where $m \in \mathbb{N}$ is mapped to g(m) under g. We define the ordering of T_G via initial segments and write $\tau \sqsubset \sigma$ if τ is an initial segment of σ .

Let *G* be a subgroup of S_{ω} . We define the degree of $T_G (\deg(T_G))$ to be the join of the Turing degrees of

- The domain of *T_G* under some computable coding of N^{<ω} in which
 □ is decidable; and
- A branching function Br : T_G → N ∪ {∞} such that Br(τ) is equal to the number of direct successors of τ in T_G.

Topology

Given a tree $T \subset \mathbb{N}^{<\omega}$, we define [T] to be the set of all paths through T. We endow [T] with the standard product topology in which the basic clopen sets are those of the form $\{f \in \mathbb{N}^{\omega} : \tau \sqsubset f\}$ for some $\tau \in T$.

In order for every path in [*T*] to represent an element of *G*, we must have that *G* is a closed subgroup of S_{ω} .

Profinite Groups and Orbits

Given a subgroup *G* of S_{ω} and $n \in \mathbb{N}$, we define the orbit of *n* under *G* as

$$\operatorname{orb}_G(n) := \{g(n) \in \mathbb{N} : g \in G\}.$$

Proposition

Let G be a subgroup of S_{ω} . The following are equivalent:

- (1) G is compact,
- (2) G is closed and all orbits under G are finite,
- (3) G is profinite.

Orbit Independence

Let *G* be a profinite subgroup of S_{ω} . Let $\{O_{G,n}\}_{n \in \mathbb{N}}$ be an enumeration of the orbits under *G* (all of which are finite). Define

$$H_n := \{g \upharpoonright O_{G,n} : g \in G\}.$$

Definition

We say that *G* has orbit independence if it is isomorphic to the Cartesian product of all H_n . That is,

$$G\cong\prod_{n\in\mathbb{N}}H_n.$$

A non-example: $G = \{1_G, (0\,1)(2\,3)\}$ does not have orbit independence. Note that $G \cong C_2$, $H_0 = \{1, (0\,1)\} \cong C_2$, $H_1 = \{1, (2\,3)\} \cong C_2$, and H_n is trivial for all n > 1. Thus $G \ncong \prod_n H_n \cong C_2 \times C_2$.

Finite Approximations

Let *G* be a profinite subgroup of S_{ω} . Given $g \in G$, define $g_k = g \upharpoonright \bigcup_{n \leq k} O_{G,n}$. Define

$$G_k:=\{g_k:g\in G\}.$$

Lemma

If G has orbit independence, then given any first order sentence α in the language of groups, $G \models \alpha$ if and only if $G_k \models \alpha$ for all but finitely many k.

This follows from the Feferman-Vaught Theorem.

Complexity of Theories: W/ Orbit Independence

Theorem

Let *G* be a profinite subgroup of S_{ω} with orbit independence. The first order theory of *G* is Δ_2^0 relative to deg(T_G).

Proof: $G \models \alpha$ iff $(\exists n)(\forall k > n)[G_k \models \alpha]$. Additionally, $G \nvDash \alpha$ iff $(\exists n)(\forall k > n)[G_k \models \neg \alpha]$. Thus, both Th(G) and its complement are Σ_2^0 relative to deg(T_G).

Complexity of Theories: Without Orbit Independence

Proposition

There exist profinite subgroups G of S_{ω} (without orbit independence) such that the existential theory of G is Σ_2^0 -complete relative to deg(T_G).

This is the worst case scenario for existential theories.

Theorem

Let G be a profinite subgroup of S_{ω} (not necessarily with orbit independence). The existential theory of G is Σ_2^0 relative to deg(T_G).

Open Question: How complicated can Th(G) be when G does not have orbit independence?

Turing Ideals and *G*₁

A collection I of Turing degrees is called a Turing ideal if

- *I* is downwards closed (under \leq_T); and
- Given $\boldsymbol{c}, \boldsymbol{d} \in \boldsymbol{I}$, we have $\boldsymbol{c} \oplus \boldsymbol{d} \in \boldsymbol{I}$.

We call *I* a *Scott ideal* if for every $c \in I$ there exists $d \in I$ that is PA relative to c.

Given a subgroup *G* of S_{ω} and a Turing ideal *I* with deg(T_G) \in *I*, we define G_I to be the subgroup of *G* all of whose elements are of degree in *I*. That is,

$$G_I = \{g \in G : \deg(g) \in I\}.$$

Question: To what degree is G_l an elementary substructure of G?

Elementarity

Let \mathcal{A} be a substructure of \mathcal{B} and let Γ be a class of formulas. We say that \mathcal{A} is a Γ -elementary substructure if for all formulas $\gamma \in \Gamma$ and tuples $\bar{a} \in \mathcal{A}$,

$$\mathcal{A} \models \gamma(\bar{a}) \iff \mathcal{B} \models \gamma(\bar{a}).$$

We express this as

 $\mathcal{A} \preceq_{\Gamma} \mathcal{B}.$

If this holds for all first order formulas γ , then we simply say that A is an elementary substructure of B and write

$$\mathcal{A} \preceq \mathcal{B}.$$

Some Results

Proposition

There exists a profinite subgroup G of S_{ω} such that $G_{\{0\}}$ is not a \exists -elementary subgroup of G.

To prove this, we build a *G* along with a computable $g \in G$ such that *g* has a square root in *G* but no computable square root. This group *G* will not have orbit independence.

Theorem

Given a profinite subgroup of G with orbit independence and any Turing ideal I,

$$G_I \preceq_\exists G.$$

With Scott ideals

Theorem

Given any profinite subgroup G of S_{ω} and a Scott ideal I,

 $G_I \preceq_{\exists} G.$

Furthermore if G has orbit independence, then

 $G_I \preceq G$.

Thus, to get that G_l is an elementary subgroup of G it is sufficient to have that l is a Scott ideal and that G has orbit independence.

Open Question: If *G* has orbit independence but *I* is not a Scott ideal, or if *G* does not have orbit independence but *I* is a Scott ideal, then $G_I \preceq_{\exists} G$. However, must we have $G_I \preceq G$?

References

- Feferman, S., Vaught R.: The first order properties of products of algebraic systems. Fundamenta Mathematicae 47(1), 57-103 (1959)
- Miller, R.: Computability for the absolute Galois group of Q. To appear, available at arXiv:2307.08935
- Osserman, B.: Inverse limits and profinite groups. Electronic manuscript
- Smith R.: Effective aspects of profinite groups. The Journal of Symbolic Logic **46**(4), 851-863 (1981)