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Reverse mathematics and computability

There is a deep correspondence—“a constant and fruitful interplay”
(Downey, Hirschfeldt, Lempp, and Solomon 2001)—between computability
theory on the one hand and reverse mathematics on the other.

▶ Set-existence theorems, calibrated using standard subsystems of
▶ second-order arithmetic, correspond with natural computability-theoretic
▶ classes and operations.

▶ Arithmetical theorems, calibrated using fragments of Peano arithmetic,
▶ correspond with uniformity results in computability theory.

More on this in Reed Solomon’s talk.



Non-injection principles and induction

Over PA− + IΣ0
k , it can be shown that for all n < m, there is no Σ0

k-definable
injection m→ n.

Thm (Dimitracopoulos, Paris 1986; Hirst 1987). TFAE over RCA0:

1. The infinitary pigeonhole principle.

2. (∀n)[there is no Σ0
2 injection n+ 1→ n].

Thm (Belanger, Chong, Wang, Wong, Yang 2021).
Over RCA0,

(∀n)[there is no Σ0
2 injection 2n→ n]

⊬ (∀n)[there is no Σ0
2 injection n+ 1→ n].



Instance-solution problems

An instance-solution problem is specified by a non-empty set of instances, and
for each instance, a non-empty set of solutions (all coded by elements of ωω).

Defn. Fix n < m. (m ̸↪→ n) is the following problem:

▶ instances are functions f : m→ n;

▶ the solutions to f are all pairs {i, j} such that i < j < m and f(i) = f(j).

Defn.
▶ idk is the problem whose instances are elements i < k, with the unique
▶ solution to any such i being i itself.

▶ limk is the problem whose instances are functions g : ω → k such that
▶ lims g(s) exists, with the solution to any such g being lims g(s).



Weihrauch reducibility

Let P and Q be instance-solution problems.

P is Weihrauch reducible to Q, written P ≤W Q, if

▶ every instance X of P uniformly computes an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂, together with X, uniformly computes
▶ a P-solution Y to X.

So the following diagram “commutes”:

X
is solved by

��

Φ // X̂
is solved by��

Y Ŷ
Ψ(X, ·)

oo

(Weihrauch 1992; Brattka; Gherardi and Marcone 2008; DDHMS 2016.)



Strong Weihrauch reducibility

Let P and Q be instance-solution problems.

P is strongly Weihrauch reducible to Q, written P ≤sW Q, if

▶ every instance X of P uniformly computes an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂ uniformly computes a P-solution Y to X.

So the following diagram “commutes”:

X
is solved by

��

Φ // X̂
is solved by��

Y Ŷ
Ψ

oo

≤sW is less natural than ≤W, but it is easier to work with. Often, results can be
lifted from≤sW to ≤W.



Jumps in the Weihrauch degrees

For any problem P, the jump of P, denoted P′, is the following problem:

▶ the instances of P′ are limit approximations to instances of P;

▶ the solutions to a limit P-instance are the solutions to the P-instance.

Example. For all k, id′k ≡sW limk.

Thm (Brattka, Gherardi, Marcone 2011).
For all problems P and Q, P ≤sW Q if and only if P′ ≤W Q′.

So in the Weihrauch degrees, a computable instance of (m ̸↪→ n)′ can be
thought of as an analogue of a Σ0

2-definable function f : m→ n.

We can study (m ̸↪→ n)′ under ≤W by studying (m ̸↪→ n) under ≤sW.



Basic facts

Prop. id2 ≤sW id3 ≤sW . . .

Prop. For each n, (n+ 1 ̸↪→ n) ≥W (n+ 2 ̸↪→ n) ≥W . . .

Prop. For each n, (n+ 1 ̸↪→ n) ≡sW id(n+12 )
.

A very useful, but less obvious, fact is the following:

Thm. idk ≤sW (m ̸↪→ n) if and only if there exist functions f1, . . . , fk : m→ n
with no common solution.

We will give tighter characterizations in the special case m = n2, and more
generally, m = qn for q ≤ n.



A motivating example

Prop id2 ≤sW (n2 ̸↪→ n) but id2 ≰sW (n2 + 1 ̸↪→ n).

To show id2 ≤sW (n2 ̸↪→ n):

▶ Φ(0): Arrange n2 as an n× n grid and partition using vertical lines.

▶ Φ(1): Partition using horizontal lines instead.

▶ Ψ({i, j}): Return 0 if i and j lie in the same vertical line, otherwise return 1.

To show id2 ≰sW (n2 + 1 ̸↪→ n):

▶ Suppose otherwise, as witnessed by Φ andΨ. So Φ(0),Φ(1) : n2 + 1→ n.

▶ There exist i ̸= j such that Φ(0)(i) = Φ(0)(j) and Φ(1)(i) = Φ(1)(j).
▶ (Apply pigeonhole twice.)

▶ ThenΨ({i, j}) equals both 0 and 1, contradiction.



Affine planes

These ideas can be pushed to obtain the following surprising result:

Thm. idk+2 ≤sW (n2 ̸↪→ n) if and only if there exist k mutually orthogonal Latin
squares of order n.

Cor. idn+1 ≤sW (n2 ̸↪→ n) if and only if there is a finite affine plane of order n.

It is a longstanding open question in combinatorics to determine for which n
there exists an affine plane of order n.

This seems to be a nice new example of the empirical observation that
computability-theoretic notions tend to be combinatorially natural, and
vice-versa.



Block designs

A resolvable balanced incomplete block design, abbreviated RBIBD(m, q), is a
family of distinct q-subsets (blocks) of [m] such that:

▶ each pair of distinct numbers from [m] is contained in exactly 1 block

▶ the set of blocks can be partitioned into partitions of [m] (parallel classes).

Example. A decomposition of K2n into perfect matchings is an RBIBD(2n, 2)
where each perfect matching is a parallel class.

Thm. For all q ≤ n, we have id qn−1
q−1
≤sW (qn ̸↪→ n) if and only if there exists an

RBIBD(qn, q).

(The extreme case q = n corresponds to our earlier result on affine planes.)



More general cases

By ad hoc means, we can prove a variety of other reductions and separations.

Example.
▶ id3 ≡sW (3 ̸↪→ 2) ≡sW (4 ̸↪→ 2) >sW (5 ̸↪→ 2) >sW (6 ̸↪→ 2) >sW (7 ̸↪→ 2).

▶ For n > 2, id(n+12 )
≡sW (n+ 1 ̸↪→ n) >sW (n+ 2 ̸↪→ n) ≥sW (2n ̸↪→ n)

▶ >sW (2n+ 1 ̸↪→ n) ≥sW (n2 ̸↪→ n) >sW (n2 + 1 ̸↪→ n).

Example. Ck is the problem whose instances are co-enumerations of
non-empty subsets of [k], with the solutions to any such instance being all
i < k not enumerated.

Thm. C3 ≤W (8 ̸↪→ 2)′. [With computer help.]

We are not aware of a general theory to study these cases.



Thank you for your attention!


