Generically Computable Linear Orderings

David Gonzalez

U.C. Berkeley Based on joint work with Wesley Calvert, Douglas Cenzer and Valentina Harizanov

> April 2024 University of Wisconsin, Milwaukee

> > ▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

We are going to discuss *generic computability* in the context of computable structure theory. We will take a structural perspective and consider *Ramsey-like theorems*.

- 1. The $\alpha\text{-Ramsey property}$
- 2. Results for linear orderings
- 3. Connection with generic and coarse computability

Ramsey's Theorem - Undergraduate Version

- Every infinite graph, has a subgraph isomorphic to K_∞ or the edgeless K^c_∞.
- ► Every infinite graph with finitely many colors has a monochromatic subgraph isomorphic to K_∞.
- Every infinite linear ordering has a sub-ordering isomorphic to ω or ω*.
- Every infinite partial ordering has a sub-ordering isomorphic to ω , ω^* or an anti-chain.

 Every infinite equivalence structure has an infinite class or infinitely many classes. There are *many* ways to abstract Ramsey's theorem; the way below is tied tightly to the "undergraduate" examples enumerated:

Every countable structure in the class \mathbb{K} has a substructure that is among the subclass $\mathbb{J} \subset \mathbb{K}$ of "simple" structures.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There are *many* ways to abstract Ramsey's theorem; the way below is tied tightly to the "undergraduate" examples enumerated:

Every countable structure in the class \mathbb{K} has a substructure that is among the subclass $\mathbb{J} \subset \mathbb{K}$ of "simple" structures.

It is often natural and useful to ask for more than a substructure. We may need to relax our notion of simple.

Notions of substructure

There is a natural stratified notion of substructure given to us by syntax: Σ_{α} -elementary substructures. **Definition:** A substructure $\mathcal{A} \subseteq \mathcal{B}$ is Σ_{α} -elementary if for all $\bar{p} \in \mathcal{A}$ and $\psi \in \Sigma_{\alpha}$

$$\mathcal{A} \models \psi(\bar{p}) \iff \mathcal{B} \models \psi(\bar{p}).$$

Note: Σ_{α} is a set of $\mathcal{L}_{\omega_{1},\omega}$ formulas with $\alpha \in \omega_{1}$. Our results will also hold for computably infinitary formulas or first order formulas at finite levels.

Definition: We say a class of structures \mathbb{K} has the α -Ramsey property if:

Every countably infinite structure in the class $\mathbb K$ has a $\Sigma_{\alpha}\text{-elementary substructure}$ that is among the subclass $\mathbb J\subset\mathbb K$ of computably presentable structures.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Note: Ramsey's theorem gives that any class of relational structures has the 0-Ramsey property.

Focusing in

Results on linear orderings

The 1-Ramsey property

Theorem: [CCGH] The class of linear orderings has the 1-Ramsey property. In fact, every linear ordering has a Σ_1 -elementary substructure isomorphic to ω , ω^* , ζ , $\omega \cdot \omega^*$, $\omega^* \cdot \omega$ or η .

The 2-Ramsey property

- 1. The set of *scattered* linear orderings has the 2-Ramsey property.
- 2. They must be in the $\omega, \omega^*, \zeta, \omega \cdot \omega^*$ or $\omega^* \cdot \omega$ case from the previous theorem.
- 3. Each of these Σ_1 -elementary substructures can be upgraded to a Σ_2 -elementary substructure by adding in the first and last 1-block if they exist.

The 2-Ramsey property: a counterexample

- 1. The 2-Ramsey property does not hold for the class of all linear orderings.
- 2. The shuffle sum of countably many linear orderings $Sh(\{L_i\}_{i \in \omega})$ is obtained by partitioning η into countably many mutually dense sets and replacing all elements in the i^{th} part with a copy of L_i .
- 3. If A is a set of natural numbers, we let Sh(A) be the shuffle sum where we treat each $n \in A$ as the unique linear orderings of size n.

4. Sh(A) does not always have a Σ_2 -elementary substructure with a computable copy, e.g. if A is Σ_3^0 immune.

Question: Can we describe the maximal class of linear orderings for which the 2-Ramsey property holds?

Rephrased: Can we describe which linear orderings have infinite, computable Σ_2 -elementary substructures?

Rephrased again: Can we describe which linear orderings have Σ_2 -generically c.e. copies?

Answer: No... at least not in a more efficient manner than the above descriptions.

Theorem:[CCGH] The maximal class of linear orderings for which the 2-Ramsey property holds is Σ_1^1 -complete.

Question: Can we avoid this at higher levels?

Theorem:[CCGH] The maximal class of linear orderings for which the $(\alpha + 2)$ -Ramsey property holds is Σ_1^1 -complete for any $\alpha \in \omega_1^{ck}$.

Note: This is new behavior for structures in general; these results also apply to structurally complete classes like graphs and groups.

Spilling the beans

Connections to Generic and Coarse Computability

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Generic and Coarse Computability

Definition: Let $S \subseteq \mathbb{N}$.

1. The density of S up to n, denoted by $\rho_n(S)$, is given by

$$\rho_n(S) = \frac{|S \cap \{0, 1, 2, \dots, n\}|}{n+1}$$

2. The asymptotic density of *S*, denoted by $\rho(S)$, is given by $\lim_{n \to \infty} \rho_n(S)$.

A set A is said to be *generically computable* if and only if there is a partial computable function ϕ such that ϕ agrees with χ_A throughout the domain of ϕ , and such that the domain of ϕ has asymptotic density 1.

A set A is said to be *coarsely computable* if and only if there is a *total* computable function ϕ that agrees with χ_A on a set of asymptotic density 1.

Generically and Coarsely Computable structures

- A is Σ_α-generically c.e. if there is a dense c.e. set D such that the substructure D with universe D is a c.e. substructure and also a Σ_α elementary substructure of A.
- A structure A is Σ_α-coarsely c.e. if there exist a dense set D and a c.e. structure E such that the substructure D with universe D is a Σ_α elementary substructure of both A and E.

Generically and Coarsely Computable copies

Lemma: For a linear ordering \mathcal{A} , \mathcal{A} has a Σ_{α} -generically c.e. copy if and only if it has a Σ_{α} elementary substructure that is isomorphic to a computable structure.

We get the following theorems using similar arguments to the Ramsey-like results:

Theorem: [CCGH] Every linear ordering has a Σ_1 -generically c.e. copy.

Theorem: [CCGH] Every linear ordering has a Σ_1 -coarsely c.e. copy.

Theorem:[CCGH] The class of linear orderings with a $\Sigma_{\alpha+2}$ -generically c.e. copy is Σ_1^1 -complete. **Theorem:**[CCGH] The class of linear orderings with a $\Sigma_{\alpha+2}$ -coarsely c.e. copy is Σ_1^1 -complete.

A contrast with normal computability

This shows that generic and coarse computability act very differently to ordinary computability.

Theorem:[Nadel] The set of models with computable copies in any $\mathcal{L}_{\omega_{1},\omega}$ elementary class is Borel. If the class is an $\mathcal{L}_{c,\omega}$ elementary class, then this set is $\Sigma^{0}_{\omega^{ck}+3}$ at worst.

We even see this difference at the lowest interesting level of our hierarchy:

Theorem: [CCGH] The class of successor linear orderings with a Σ_1 -generically c.e. copy is Σ_1^1 -complete.

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(()