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Classical computable structure theory studies countable
algebraic and combinatorial structures such as rings,
fields, groups, graphs, linear orders, etc.
Missing from this list: the structures of analysis such as
Banach spaces, Hilbert spaces, C∗ algebras, etc. These
are called metric structures.
The model theory of metric structures has been
extensively developed by Henson, Ben-Yaacov, et. al.
The program of effective metric structure theory uses the
tools of computable analysis to extend the realm of
computable structure theory to separable metric structures.
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In this talk, I will focus on recent work concerning C∗ algebras.
Let’s recall what these are.

Definition
A C∗ algebra is a complete normed ∗-algebra A (over C) so that
‖uu∗‖ = ‖u‖2 for every vector u of A.

Example

Matn,n(C) where the involution is the adjoint.

Example

C∗([0,1]).
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The second of these examples can be generalized as follows.

Definition
When X is a compact Polish space, C∗(X ) is the C∗ algebra
consisting of the continuous functions from X into C. The
involution is given by pointwise conjugation.
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Why C∗ algebras?
Because it’s there.
If A is a C∗ algebra, then there is a Hilbert space H so that
A is isometrically isomorphic to an algebra of bounded
linear operators on H.
C∗ algebras important for quantum information theory.
Model theory of C∗ algebras recently experienced
considerable growth.
Computability of theories of C∗ algebras plays a role in
Goldbring and Hartt’s refutation of the Connes Embedding
Conjecture.
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Let’s start by defining what we mean by a computable
presentation of a C∗ algebra. (Definition due to A. Fox [?].)

Definition
Suppose A is a C∗ algebra.

1 A generating sequence for A is a sequence (vn)n∈N of
vectors of A that generates a dense ∗-algebra of A.

2 If (vn)n∈N is a generating sequence for A, then (A, (vn)n∈N)
is a presentation of A.

3 If A# = (A, (vn)n∈N) is a presentation of A, then each
vector in the ∗-algebra generated by (vn)n∈N is a rational
vector of A#.

4 A presentation A# is computable if the norm is computable
on the rational vectors of A.
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Some standard presentations

Example
C: declare the n-distinguished vector to be 1.

Example

C∗([0,1]): declare the n-th distinguished vector to be the power
function t 7→ tn.

Example

Matn,n(C): use the standard basis.

Remark
All of these presentations are computable.
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An initial goal of this direction is to understand the effective
content of the following classical result due to Gelfand.

Theorem
If A is a commutative unital C∗ algebra, then there is a compact
Polish space X so that A is isometrically isomorphic to C∗(X ).

To understand the effective content of this theorem, we first
must consider computably compact presentations of Polish
spaces which we define now.
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Convention
Throughout the rest of this talk, X is a compact Polish space.

Definition
A presentation of X is a triple (X ,d , (pn)n∈N) where d is a
metric that is compatible with X and (pn)n∈N is dense in X .

Definition

Suppose X# = (X ,d , (pn)n∈N) is a presentation of X . We call
pn the n-th distinguished point of X#.

Convention

Throughout the rest of this talk, X# denotes a presentation of
X .
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Definition

Suppose X# is a presentation of X .
1 X# is computable if its metric is computable on its

distinguished points.
2 X# is computably compact if it is computable and if from

k ∈ N it is possible to compute distinguished points
p0, . . . ,pn of X# so that X =

⋃
j B(pj ;2−k ).
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Theorem (Fox 2022+ [?])

If X has a computably compact presentation, then C∗(X ) is
computably presentable.

Theorem (BEFGHMMT 2024+ [?])

If C∗(X ) has a computable presentation, then X has a
computably compact presentation.

Remark
Both of the above theorems are highly uniform. Together, they
classify the computably presentable C∗ algebras that are unital
and commutative. Our next step is to analyze the computable
categoricity of these spaces. First, we will take a detour through
evaluative presentation. The definition of these presentations
require we first understand computability of maps between
presented metric structures.
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Foundations: how to think about computing functions
on metric structures

To define what we mean by a computable function in the metric
setting requires us to rethink our assumptions about what it
means to compute a function. We usually think of a computable
function like this:

 
 
 f(x) x Algorithm 
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Foundations: how to think about computing functions
on metric structures

However, a point in a metric structure typically requires an
infinite amount of information to be specified, so this model no
longer makes sense. In practice, one replaces exact
specifications with approximations:

 Approximation of x Approximation of 
             f(x) 

Algorithm 
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Foundations: how to think about computing functions
on metric structures

However, if our algorithm always produces the same
approximation of f (x), that’s not very useful; we need a
convergence criterion. That is, the machine can compute
arbitrarily good approximations from sufficiently good
approximations.
Philosophy: an approximation is a rational open ball (ball
whose center is a rational vector and whose radius is a
positive rational real).
There are numerous ways to formalize these intuitions;
take your pick or come up with your own.

Timothy H. McNicholl



Definition

Let X# be a presentation of a compact Polish space X , and let
C∗(X )# be a presentation of C∗(X ). We say that C∗(X )# is
evaluative over X# if the evaluation map (f ,p) 7→ f (p) of C∗(X )
is a computable map from C∗(X )# ⊗ X# to C.

Here, C∗(X )# ⊗ X# is the presentation of the metric space
C∗(X )× X induced by the presentations C∗(X )# and X#. We
have three key results on evaluative presentations.
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Theorem (M. 2024+)

If C∗(X )# is computable, then, up to computable
homeomorphism, there is a unique presentation X# over which
C∗(X )# is evaluative.

Theorem (M. 2024+)

If there is a computable presentation of C∗(X ) that is evaluative
over X#, then X# is computably compact.

Theorem (M. 2024+)

If X# is computably compact, then, up to computable isometric
isomorphism, there is a unique computable presentation of
C∗(X ) that is evaluative over X#.
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By means of these theorems, we obtain an effective version of
the following.

Theorem (“Banach-Stone")

If T is an isometric isomorphism of C∗(X ) onto C∗(Y ), then
there is a unique homeomorphism ψ of Y onto X so that
T (f ) = f ◦ ψ for all f ∈ C∗(X ).

Definition
ψ is called the spatial realization of T .
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Theorem (M. 2024+)

Suppose for j ∈ {0,1} C∗(Xj)
# is computable and evaluative

over X#
j . Further, suppose T is a computable isometric

isomorphism of C∗(X0)
# with C∗(X1)

#. Then, the spatial
realization of T is a computable map of X#

1 to X#
0 .

Corollary
TFAE.

1 C∗(X ) is computably categorical.
2 Any two computably compact presentations of X are

computably homeomorphic.

Again, the proofs of the theorem and corollary are highly
uniform.
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From the corollary, we can generate some new examples.

Theorem (Fox 2022)

C∗([0,1]) is not computably categorical.

Corollary
There are two computably compact presentations of the Polish
space [0,1] that are not computably homeomorphic.

Theorem (M. 2024+)
Any two computably compact presentations of the Polish space
2ω are computably homeomorphic.

Corollary (M. 2024+)

C∗(2ω) is computably categorical.
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By contrast:

Theorem (Thewmorakot 2023 [?])

The Banach space C(2ω) is not computably categorical.

Melnikov and Ng recently claimed to have constructed a
compact Polish space Y so that C(Y ) is computably
presentable but Y does not have a computably compact
presentation.
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