Hilbert's Tenth Problem for Generic Algebraic Fields

Russell Miller

Queens College & CUNY Graduate Center

Special Session on Computability Theory AMS Sectional Meeting 21 April 2024 University of Wisconsin-Milwaukee

(Joint work with Kirsten Eisenträger, Caleb Springer, and Linda Westrick.)

Russell Miller (CUNY)

Generic Algebraic Fields

HTP: Hilbert's Tenth Problem

Definition

For a countable field (or ring) F, Hilbert's Tenth Problem for F is the set

 $HTP(F) = \{ f \in F[X_0, X_1, \ldots] : (\exists \vec{a} \in F^{<\omega}) \ f(a_0, \ldots, a_n) = 0 \}$

of all polynomials (in several variables) with solutions in F.

HTP(F) is always c.e. relative to the atomic diagram D(F). Famously, $HTP(\mathbb{Z})$ is exactly as hard as \emptyset' , the Halting Problem. Indeed every computably enumerable set is *diophantine*, i.e., definable in \mathbb{Z} by an existential formula. (Matiyasevich-Davis-Putnam-Robinson, 1970.)

Decidability of $HTP(\mathbb{Q})$ is open, but $HTP(\overline{\mathbb{Q}})$ is decidable. Our goal is to examine the general tendency for fields between these two – i.e., for algebraic field extensions of \mathbb{Q} .

Intuition for "general tendency"

The equation $X^5 + Y^5 = 1$ has no nonzero solutions in \mathbb{Q} . However, it has plenty of solutions in $\overline{\mathbb{Q}}$, and if we choose a subfield *F* of $\overline{\mathbb{Q}}$ "at random," it seems near-certain that *F* will contain such a solution.

More rigorously: no matter which (finitely many) elements have already been included in F or excluded from F, there will still remain infinitely many solutions in $\overline{\mathbb{Q}}$ that could yet appear in F.

(Indeed, for infinitely many $x \in \mathbb{Q}$, $\sqrt[5]{1-x^5}$ could yet appear, and each of these has degree 5 over \mathbb{Q} .)

Therefore $X^5 + Y^5 - 1 = 0 \neq XY$ should have a solution in an "arbitrarily chosen" (or *generic*) *F*: sooner or later some *x* and *y* realizing this formula should appear in *F*.

Another example: beware of your intuition!

The equation $X^2 - 2Y^2 = 0$ has no nonzero solutions in \mathbb{Q} . However, it has plenty of solutions in $\overline{\mathbb{Q}}$

... but this situation is different! Suppose that, in dividing up the elements of $\overline{\mathbb{Q}}$, we decide that $\sqrt{2} \notin F$. Then *F* cannot contain any nonzero solution, because if $x^2 - 2y^2 = 0 \neq xy$ and $x, y \in F$, then $\frac{x}{y} \in F$, yet $(\frac{x}{y})^2 = 2$.

Thus the choice of excluding $\sqrt{2}$ from *F* ruled out all nonzero solutions (whereas including $\sqrt{2}$ in *F* would immediately yield a solution). In this example, both the existential sentence and its negation

$$(\exists x, y) \ x^2 - 2y^2 = 0 \neq xy$$
 $(\forall x, y) \neg (x^2 - 2y^2 = 0 \neq xy)$

seem reasonably (equally?) likely to hold.

Topology on the subfields of $\overline{\mathbb{Q}}$

Fix one computable presentation $\overline{\mathbb{Q}}$ of the algebraic closure of \mathbb{Q} . Each choice of finitely many elements constitutes a *condition* on subfields. We write $(\vec{a}; \vec{b})$ to denote the condition saying that all of \vec{a} is included and all of \vec{b} is excluded. Then the set

$$\mathcal{U}_{ec{a};ec{b}} = \{ F \subseteq \overline{\mathbb{Q}} : \mathbb{Q}(ec{a}) \subseteq F \And F \cap \{ec{b}\} = \emptyset \}$$

is a basic open set in our topology on the space $\mathbf{Sub}(\overline{\mathbb{Q}})$ of all subfields of $\overline{\mathbb{Q}}$, and the topology is generated by these basic open sets, as \vec{a} and \vec{b} range over all finite tuples from $\overline{\mathbb{Q}}$.

The relations $\mathcal{U}_{\vec{a};\vec{b}} \subseteq \mathcal{U}_{\vec{c};\vec{d}}, \mathcal{U}_{\vec{a};\vec{b}} = \mathbf{Sub}(\overline{\mathbb{Q}})$, and $\mathcal{U}_{\vec{a};\vec{b}} = \emptyset$ are decidable, by theorems of Kronecker.

Russell Miller (CUNY)

 $\sqrt{3}$ $\sqrt{2}$

The nodes \times are unsatisfiable conditions: if we have ruled out $\sqrt{2}$, then *F* cannot contain both $\sqrt{3}$ and $\sqrt{6}$. But we still get a decidable subtree of $2^{<\omega}$, with no terminal nodes and no isolated paths. So the set of paths through it is homeomorphic to Cantor space 2^{ω} . This is the space **Sub**($\overline{\mathbb{Q}}$), with each path naming a subfield.

Russell Miller (CUNY)

Conditions and forcing

Definition

A condition $(\vec{a}; \vec{b})$ forces a sentence φ , written $(\vec{a}; \vec{b}) \Vdash \varphi$, if

```
\{F \in \mathcal{U}_{\vec{a}:\vec{b}}: \varphi \text{ is true in } F\}
```

is dense within $\mathcal{U}_{\vec{a}:\vec{b}}$ in our topology.

In our examples earlier:

•
$$(\emptyset; \sqrt{2}) \Vdash (\forall x \forall y) \neg [x^2 - 2y^2 = 0 \neq xy].$$

•
$$(\sqrt{2}; \emptyset) \Vdash (\exists x \exists y) x^2 - 2y^2 = 0 \neq xy.$$

•
$$(\emptyset; \emptyset) \Vdash (\exists x \exists y) x^5 + y^5 - 1 = 0 \neq xy.$$

Notice that in the third item, not all fields in $\mathcal{U}_{\emptyset;\emptyset}$ satisfy the sentence given – e.g., \mathbb{Q} does not – but densely many of them satisfy it. Ours is an unusual definition: forcing an existential sentence does not quite guarantee the truth of the sentence being forced!

Specifics of forcing ∃ and ∀ sentences

If $(\vec{a}; \vec{b}) \Vdash \forall \vec{x} \neg \psi(\vec{x})$, then in fact every field in $\mathcal{U}_{\vec{a};\vec{b}}$ satisfies $\forall \vec{x} \neg \psi(\vec{x})$. If any $F \in \mathcal{U}_{\vec{a};\vec{b}}$ contained a tuple \vec{c} with $\psi(\vec{c})$, then $(\vec{a}, \vec{c}; \vec{b})$ would be consistent (since F exists!) and every field in $\mathcal{U}_{\vec{a},\vec{c}; \vec{b}}$ would contain this witness \vec{c} . Since $\mathcal{U}_{\vec{a},\vec{c}; \vec{b}} \subseteq \mathcal{U}_{\vec{a};\vec{b}}$, this would contradict the density in $\mathcal{U}_{\vec{a};\vec{b}}$ of the fields satisfying $\forall \vec{x} \neg \psi(\vec{x})$.

However, as seen with $X^5 + Y^5 = 1$ above, a condition can force an existential sentence without the sentence being true in all fields realizing the condition.

Indeed, if we defined forcing the usual way, then the question of whether $(\vec{a}; \vec{b})$ forces $\exists \vec{x} \ p(\vec{x}) = 0$ would be exactly the question of whether p = 0 has a solution in $\mathbb{Q}(\vec{a})$. But this is $HTP(\mathbb{Q}(\vec{a}))$, whose decidability is an open question!

Key theorem

Theorem (Eisenträger, M., Springer, and Westrick)

It is decidable whether a condition $(\vec{a}; \vec{b})$ forces an existential or universal sentence φ (with parameters from $\mathbb{Q}(\vec{a})$). The decision procedure is uniform in \vec{a}, \vec{b} , and φ .

The proof is not simple. For $(\emptyset; \sqrt{2}) \Vdash \forall X \forall Y \neg (X^2 - 2Y^2 = 0 \neq XY)$, there was a "reason" for the forcing: the rational function $\frac{X}{Y}$. Whenever $X^2 - 2Y^2 = 0 \neq XY$, we get $(\frac{X}{Y})^2 = \frac{2Y^2}{Y^2} = 2$ so $\frac{X}{Y}$ is a square root of 2. The key to the proof is to show that this holds in general: whenever $(\overline{a}; \overline{b})$ forces a universal sentence, there is a "reason" stemming from the excluded tuple \overline{b} .

∃-theory of a generic algebraic field

We now focus on the class of *generic* (specifically, 1-generic) fields. These fields form a comeager class in $\mathbf{Sub}(\overline{\mathbb{Q}})$. So, in the sense of Baire category, a property that holds of all generic fields may be considered to hold "almost everywhere."

Proposition

Let φ be an existential or universal sentence, and let $F \in \mathbf{Sub}(\overline{\mathbb{Q}})$ be a 1-generic field. Then

$$F \models \varphi \iff F$$
 realizes some $(\vec{a}; \vec{b})$ with $(\vec{a}; \vec{b}) \Vdash \varphi$.

In turn, the conditions realized by *F* can be determined if we know *F* as a subfield of $\overline{\mathbb{Q}}$, or equivalently (using Rabni's Theorem!), if we know the atomic diagram of *F* and the *root set* of *F*:

$$HTP_1(F) = R_F = \{g \in F[X] : (\exists x \in F) \ g(x) = 0\}.$$

 R_F is the one-variable version of Hilbert's Tenth Problem HTP(F) for F.

Root sets of generic fields

Theorem

Every generic algebraic field has a (standard) presentation F such that

 $R_F \not\leq_T D(F).$

However, R_F is always low relative to D(F): all presentations satisfy

 $(R_F \oplus D(F))' \leq_T (D(F))'.$

General tendency of HTP(F) for $F \subseteq \overline{\mathbb{Q}}$

Theorem (EMSW)

For all generic algebraic extensions *F* of \mathbb{Q} , the following sets are Turing-equivalent relative to D(F):

- The root set $R_F = HTP_1(F)$.
- *HTP*(*F*).
- The image of *F* in $\overline{\mathbb{Q}}$ under a (*D*(*F*)-computable) field embedding.

Moreover, all of these are of low Turing degree relative to D(F), and in general they are not computable relative to D(F) (although exceptional copies of *F* do exist).

Notice that therefore many sets that are D(F)-computably enumerable (including the Halting Problem itself) fail to be diophantine in F.

Since the generic extensions of \mathbb{Q} form a comeager class in the space of all algebraic extensions, each of these properties may be considered to hold of "almost all" algebraic extensions of \mathbb{Q} , in the sense of Baire category.

Russell Miller (CUNY)

$HTP^{\infty}(F)$

Let $HTP^{\infty}(F) = \{f \in F[\vec{X}] : f = 0 \text{ has infinitely many solutions in } F\}.$

Theorem (EMSW)

It is decidable, uniformly in \vec{a} , \vec{b} , and f, whether $(\vec{a}, \vec{b}) \Vdash f \in HTP^{\infty}(F)$.

Corollary

For all 2-generic extensions F of \mathbb{Q} , $HTP^{\infty}(F) \equiv_T HTP_1(F) = R_F$ is again low (but in general noncomputable) relative to D(F).

Corollary (of the proof)

For every condition $(\vec{a}; \vec{b})$, there exists a computable field $F \in U_{\vec{a};\vec{b}}$ such that HTP(F) and $HTP^{\infty}(F)$ are decidable.

Deciding if $(\overline{a}; \overline{b}) \Vdash \exists^{\infty}(X, Y, Z) (X^2 + Y^2)^2 - 2Z^2 = 0$

First check: this *f* has >1 variable, and $(\overline{a}; \overline{b}) \not\Vdash \forall X, Y, Z f \neq 0$. This *f* has absolutely irreducible factors f_0, f_1 in $\mathbb{Q}(\sqrt{2})[X, Y, Z]$, so consider two extensions, putting $\sqrt{2}$ in either \overline{a} or \overline{b} . Let $F = \mathbb{Q}(\overline{a}), K = F(\overline{b})$.

- If $\sqrt{2} \in F$, then $(\overline{a}; \overline{b}) \Vdash \exists^{\infty}(X, Y, Z) f = 0$.
- Else $\sqrt{2} \in K F$. The same reduction as before finds the formula $\frac{X^2+Y^2}{Z} = \sqrt{2}$, so f = 0 only works if Z = 0. (If the denominator had ∞ -many solutions, we would know $(\overline{a}; \overline{b}) \Vdash \exists^{\infty}(X, Y, Z) f = 0$.)
- Now we know the finitely many Z that can work here, only Z = 0. Specializing, we get $0 = f(X, Y, 0) = (X^2 + Y^2)^2$.
 - If $i \in F = \mathbb{Q}(\overline{a})$, then $(\overline{a}; \overline{b}) \Vdash \exists^{\infty}(X, Y, Z)$ f = 0. Every (q, iq, 0) with $q \in \mathbb{Q}$ is a solution.
 - 2 If $i \in K F$, then the only solution is (0, 0, 0), as $\frac{X}{Y} = i$. So

 $(\overline{a};\overline{b}) \Vdash \neg \exists^{\infty}(X,\underline{Y},Z) f = 0$

If $i \notin K$, then $(\overline{a}; \overline{b})$ forces neither, since it has extensions $(\overline{a}, i; \overline{b})$ and $(\overline{a}; \overline{b}, i)$ that force both results.

Thank you!

Selected Bibliography

- P. Dittmann & A. Fehm, Non-definability of rings of integers in most algebraic fields. *Notre Dame Journal of Formal Logic* 62 (2021) 3, 589–592.
- K. Eisenträger, R. Miller, C. Springer, & L. Westrick, A topological approach to undefinability in algebraic fields. *Bulletin of Symbolic Logic* **29** (2023) 4, 626–655.
- J. Koenigsmann, Defining Z in Q. Annals of Mathematics (2) 183 (2016) 1, 73–93.
- J. Park, A universal first-order formula defining the ring of integers in a number field. *Mathematical Research Letters* **20** (2013) 5, 961–980.