The tree pigeonhole principle in the Weihrauch degrees

Reed Solomon University of Connecticut

(with Damir Dzhafarov and Manlio Valenti)

The tree pigeonhole principle in the Weihrauch degrees

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Ramsey's theorem and the tree theorem

Ramsey's theorem for singletons. For every $k \ge 1$ and every coloring $c : \omega \to k$, there is an infinite set H such that $c \upharpoonright H$ is constant. We say H is a *homogeneous set* for c.

 RT_k^1 denotes this statement for a fixed k and RT^1 denotes $\forall k RT_k^1$.

Tree pigeonhole principle. For every $k \ge 1$ and every coloring $c: 2^{<\omega} \to k$, there is an $H \subseteq 2^{<\omega}$ such that $H \cong 2^{<\omega}$ (as posets) and $c \upharpoonright H$ is constant.

 TT_k^1 denotes this statement for a fixed k and TT^1 denotes $\forall k \mathsf{TT}_k^1$.

 TT_2^1 : for every coloring $c: 2^{<\omega} \to 2$, there is an $H \cong 2^{<\omega}$ such that $c \upharpoonright H$ is constant.

"Dense or cone" proof:

Case 1. Suppose the nodes with color 0 are dense in $2^{<\omega}$:

$$(\forall \sigma)(\exists \tau \succeq \sigma) (c(\tau) = 0)$$

Define $h: 2^{<\omega} \to 2^{<\omega}$ recursively by $h(\sigma * i) = \tau$ such that $h(\sigma) * i \leq \tau$ and $c(\tau) = 0$. Let H = range(h).

Case 2. If the nodes with color 0 are not dense, then there is a σ such that $c(\tau) = 1$ for all $\tau \succeq \sigma$. Let $H = \{\tau \mid \sigma \preceq \tau\}$.

Fact. (Chubb, Hirst, McNicholl)

0123...

 $\mathsf{RCA}_0 \vdash (\forall k) (\mathsf{TT}_k^1 \to \mathsf{RT}_k^1) \text{ and } \mathsf{RCA}_0 \vdash \mathsf{TT}^1 \to \mathsf{RT}^1$

Proof. Given $c : \omega \to k$, define $\widehat{c} : 2^{<\omega} \to k$ by $\widehat{c}(\sigma) = c(|\sigma|)$.

Theorem. Over RCA₀,

- Chubb, Hirst and McNicholl: $I\Sigma_2 \rightarrow TT^1 \rightarrow B\Sigma_2$
- Corduan, Groszek and Mileti: $B\Sigma_2 \not\rightarrow TT^1$ (and more)
- Chong, Li, Wang and Yang: $TT^1 \not\rightarrow I\Sigma_2$ (and more)

Numerous questions about the first order consequences of TT^1 remain open. Our project considers these questions in the Weihrauch degrees.

Many theorems studied in reverse math have the form

$$(\forall X) (\phi(X) \to (\exists \widehat{X}) \psi(X, \widehat{X}))$$

where ϕ and ψ are arithmetical formulas (with set parameters).

Problem: given X such that $\phi(X)$, find \widehat{X} such that $\psi(X, \widehat{X})$.

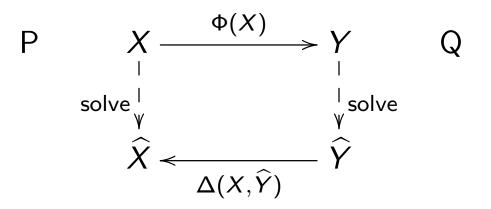
A problem is a partial multifunction $P :\subseteq \omega^{\omega} \Rightarrow \omega^{\omega}$. An $X \in \text{dom}(P)$ is a P-instance and an $\hat{X} \in P(X)$ is a P-solution to X.

Example. An instance of TT_k^1 is a coloring $c : 2^{<\omega} \to k$ and a solution to c is a homogeneous set $H \cong 2^{<\omega}$.

Weihrauch reducibility

For problems P and Q, P is *Weihrauch reducible* to Q if there are Turing functionals Φ and Δ such that

- for every P-instance X, $\Phi(X) = Y$ is a Q-instance, and
- for every Q-solution \widehat{Y} to Y, $\Delta(X, \widehat{Y}) = \widehat{X}$ is a P-solution to X.



Example. For each k, $RT_k^1 \leq_W TT_k^1$ by the level coloring translation.

The collection of all problems with \leq_W form the Weihrauch degrees.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < の < ↔

Translating RT^1 and TT^1 (Brattka and Rakotoniaina)

Perhaps the most natural translations of RT^1 and TT^1 are

- $\mathsf{RT}^1_{\mathbb{N}}$ instance is $c : \omega \to k$ for $k \ge 1$ solution is an infinite homogeneous set for c.
- $\mathsf{TT}^1_{\mathbb{N}}$ instance is $c: 2^{<\omega} \to k$ for $k \ge 1$ solution is an infinite homogeneous set $H \cong 2^{<\omega}$ for c.

Fact. $\mathsf{RT}^1_k \leq_W \mathsf{RT}^1_{\mathbb{N}}$ and $\mathsf{RT}^1_{\mathbb{N}} \leq_W \mathsf{TT}^1_{\mathbb{N}}$ by the level coloring of Chubb, Hirst and McNicholl.

(There is a second natural translation, RT_{+}^{1} and TT_{+}^{1} , in which the instances are pairs $\langle k, c \rangle$ giving an explicit upper bound on the number of colors.)

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 - のへで

Typically, the solution to a problem instance is a set or function.

• RT_k^1 : instance is $c: \omega \to k$ and solution is a homogeneous set H.

However, some problems have numerical solutions.

Infinite Pigeonhole Principle_k: instance is c : ω → k and solution is a color i < k such that c⁻¹(i) is infinite.

Definition. P is a *first order problem* if every solution to a P-instance is a number (i.e. $P(X) \subseteq \omega$ for all P-instances X).

All of the versions of Ramsey's theorem for singletons are Weihrauch equivalent to first order problems.

$$\mathsf{RT}^1_k \equiv_W \mathsf{Inf} \mathsf{Pigeon}_k \qquad \mathsf{RT}^1_{\mathbb{N}} \equiv_W \mathsf{Inf} \mathsf{Pigeon}_{\mathbb{N}}$$

Proposition. For every P, there is a first order problem ${}^{1}P$ s.t.

$${}^{1}P \equiv_{W} \sup_{\leq W} \{F \leq_{W} P : F \text{ is a first order problem}\} \leq_{W} P$$

Example. ${}^{1}\mathsf{RT}_{k}^{1} \equiv_{W} \mathsf{RT}_{k}^{1}$ because $\mathsf{Inf} \mathsf{Pigeonhole}_{k} \equiv_{W} \mathsf{RT}_{k}^{1}$. Similarly, ${}^{1}\mathsf{RT}_{\mathbb{N}}^{1} \equiv_{W} \mathsf{RT}_{\mathbb{N}}^{1}$

What can we say about ${}^{1}\mathsf{TT}_{k}^{1}$ and ${}^{1}\mathsf{TT}_{\mathbb{N}}^{1}$? Since $\mathsf{RT}_{k}^{1} \leq_{W} \mathsf{TT}_{k}^{1}$,

$$\mathsf{RT}_{k}^{1} \equiv_{W} {}^{1}\mathsf{RT}_{k}^{1} \leq_{W} {}^{1}\mathsf{TT}_{k}^{1} \leq_{W} \mathsf{TT}_{k}^{1}$$
$$\mathsf{RT}_{\mathbb{N}}^{1} \leq_{W} {}^{1}\mathsf{TT}_{\mathbb{N}}^{1} \leq_{W} \mathsf{TT}_{\mathbb{N}}^{1}$$

Is TT_k^1 or TT_N^1 equivalent to a first order problem?

Exploring ${}^{1}TT_{2}^{1}$

Recall the proof of TT_2^1 : either $\{\tau : c(\tau) = 0\}$ is dense or there is a σ s.t. $c(\tau) = 1$ for all $\tau \succeq \sigma$.

V₀: instances $c : 2^{<\omega} \to 2$ and solutions are $\langle i, \sigma \rangle$ s.t. $\{\tau : c(\tau) = i\}$ is dense above σ .

V₄: instances $c : 2^{<\omega} \to 2$ and solutions are $\langle i, \sigma \rangle$ s.t. if i = 0, then $\{\tau : c(\tau) = 0\}$ is dense and if i = 1, then $c(\tau) = 1$ for all $\tau \succeq \sigma$.

We have $TT_2^1 \leq_W V_0 \leq_W V_4$. However, ...

Theorem (Dzhafarov, Solomon, Valenti). $V_0 <_W V_4$ and so $TT_2^1 <_W V_4$. In fact, $V_0 \equiv_W TC_N <_W V_4 \equiv_W sTC_N$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● の Q ()

Connections beyond $\mathsf{RT}_k^1 \leq_W {}^1\mathsf{TT}_k^1 \leq_W \mathsf{TT}_k^1$

Theorem (Dzhafarov, Solomon, Valenti). For every $k \ge 2$, • $RT_j^1 \not\leq_W TT_k^1$ for j > k. Therefore,

 $TT_{2}^{1} <_{W} TT_{3}^{1} <_{W} TT_{4}^{1} <_{W} \cdots$ ${}^{1}TT_{2}^{1} <_{W} {}^{1}TT_{3}^{1} <_{W} {}^{1}TT_{4}^{1} <_{W} \cdots$ ${}^{1}TT_{k}^{1} \not\leq_{W} RT_{j}^{1} \text{ for every } j, \text{ and therefore, } TT_{k}^{1} \not\leq_{W} RT_{j}^{1}.$ ${}^{T}T_{k}^{1} \not\leq_{W} RT_{\mathbb{N}}^{1}, \text{ and therefore, } TT_{\mathbb{N}}^{1} \not\leq_{W} RT_{\mathbb{N}}^{1}.$ ${}^{However, } TT_{k}^{1} \leq_{W} D_{k}^{2}.$

The tree pigeonhole principle in the Weihrauch degrees

Theorem (Dzhafarov, Solomon, Valenti). ${}^{1}TT^{1}_{\mathbb{N}} \leq_{W} \mathsf{RT}^{1}_{\mathbb{N}}$

This result has a number of immediate corollaries.

•
$${}^{1}\mathsf{T}\mathsf{T}^{1}_{\mathbb{N}} \equiv_{W} \mathsf{R}\mathsf{T}^{1}_{\mathbb{N}}$$

(since
$$\mathsf{RT}^1_{\mathbb{N}} \leq_W {}^1\mathsf{TT}^1_{\mathbb{N}} \leq_W \mathsf{TT}^1_{\mathbb{N}}$$
)

¹TT¹_N <_W TT¹_N, so TT¹_N is not equivalent to a first order problem (since TT¹_N ≤_W RT¹_N)
For every j, k ≥ 2, TT¹_k ≤_W ¹TT¹_j (since ¹TT¹_j ≤_W ¹TT¹_N ≡_W RT¹_N but TT¹_k ≤_W RT¹_N)
¹TT¹_k <_W TT¹_k, so TT¹_k is not equivalent to a first order problem.

Thank you!

▲□▶▲□▶▲□▶▲□▶ ▲□ シネ?