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Ramsey’s theorem and the tree theorem

Ramsey’s theorem for singletons. For every k � 1 and every coloring
c : ! ! k , there is an infinite set H such that c �H is constant. We say H

is a homogeneous set for c .

RT1
k denotes this statement for a fixed k and RT1 denotes 8k RT1

k .

Tree pigeonhole principle. For every k � 1 and every coloring
c : 2<! ! k , there is an H ✓ 2<! such that H ⇠= 2<! (as posets) and
c �H is constant.

TT1
k denotes this statement for a fixed k and TT1 denotes 8k TT1

k .
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TT1
2: for every coloring c : 2<! ! 2, there is an H ⇠= 2<! such that c �H

is constant.

“Dense or cone” proof:

Case 1. Suppose the nodes with color 0 are dense in 2<!:

(8�)(9⌧ ⌫ �) (c(⌧) = 0)

Define h : 2<! ! 2<! recursively by h(� ⇤ i) = ⌧ such that h(�) ⇤ i � ⌧
and c(⌧) = 0. Let H = range(h).

Case 2. If the nodes with color 0 are not dense, then there is a � such
that c(⌧) = 1 for all ⌧ ⌫ �. Let H = {⌧ | � � ⌧}.
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Fact. (Chubb, Hirst, McNicholl)

RCA0 ` (8k) (TT1
k ! RT1

k) and RCA0 ` TT1 ! RT1

Proof. Given c : ! ! k , define bc : 2<! ! k by bc(�) = c(|�|).

Theorem. Over RCA0,

• Chubb, Hirst and McNicholl: I⌃2 ! TT1 ! B⌃2

• Corduan, Groszek and Mileti: B⌃2 6! TT1 (and more)

• Chong, Li, Wang and Yang: TT1 6! I⌃2 (and more)

Numerous questions about the first order consequences of TT1 remain
open. Our project considers these questions in the Weihrauch degrees.
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Instance-solution problems

Many theorems studied in reverse math have the form

(8X )
�
�(X ) ! (9 bX ) (X , bX )

�

where � and  are arithmetical formulas (with set parameters).

Problem: given X such that �(X ), find bX such that  (X , bX ).

A problem is a partial multifunction P :✓ !! ◆ !!.

An X 2 dom(P) is a P-instance and an bX 2 P(X ) is a P-solution to X .

Example. An instance of TT1
k is a coloring c : 2<! ! k and a solution to

c is a homogeneous set H ⇠= 2<!.
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Weihrauch reducibility

For problems P and Q, P is Weihrauch reducible to Q if there are Turing
functionals � and � such that

• for every P-instance X , �(X ) = Y is a Q-instance, and

• for every Q-solution bY to Y , �(X , bY ) = bX is a P-solution to X .

P X
�(X )

//

solve
✏✏

Y

solve
✏✏

Q

bX bY
�(X , bY )

oo

Example. For each k , RT1
k W TT1

k by the level coloring translation.

The collection of all problems with W form the Weihrauch degrees.
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Translating RT1 and TT1 (Brattka and Rakotoniaina)

Perhaps the most natural translations of RT1 and TT1 are
• RT1

N instance is c : ! ! k for k � 1
solution is an infinite homogeneous set for c .

• TT1
N instance is c : 2<! ! k for k � 1
solution is an infinite homogeneous set H ⇠= 2<! for c .

Fact. RT1
k W RT1

N and RT1
N W TT1

N by the level coloring of Chubb,
Hirst and McNicholl.

(There is a second natural translation, RT1
+ and TT1

+, in which the
instances are pairs hk , ci giving an explicit upper bound on the number of
colors.)
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Typically, the solution to a problem instance is a set or function.

• RT1
k : instance is c : ! ! k and solution is a homogeneous set H.

However, some problems have numerical solutions.

• Infinite Pigeonhole Principlek : instance is c : ! ! k and solution is a
color i < k such that c�1(i) is infinite.

Definition. P is a first order problem if every solution to a P-instance is a
number (i.e. P(X ) ✓ ! for all P-instances X ).

All of the versions of Ramsey’s theorem for singletons are Weihrauch
equivalent to first order problems.

RT1
k ⌘W Inf Pigeonk RT1

N ⌘W Inf PigeonN
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First order part (Dzhafarov, Solomon, Yokoyama)

Proposition. For every P, there is a first order problem 1P s.t.

1P ⌘W sup
W

{F W P : F is a first order problem} W P

Example. 1RT1
k ⌘W RT1

k because Inf Pigeonholek ⌘W RT1
k .

Similarly, 1RT1
N ⌘W RT1

N

What can we say about 1TT1
k and 1TT1

N? Since RT1
k W TT1

k ,

RT1
k ⌘W

1RT1
k W

1TT1
k W TT1

k

RT1
N W

1TT1
N W TT1

N

Is TT1
k or TT1

N equivalent to a first order problem?
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Exploring 1TT1
2

Recall the proof of TT1
2: either {⌧ : c(⌧) = 0} is dense or there is a � s.t.

c(⌧) = 1 for all ⌧ ⌫ �.

V0: instances c : 2<! ! 2 and solutions are hi ,�i s.t. {⌧ : c(⌧) = i} is
dense above �.

V4: instances c : 2<! ! 2 and solutions are hi ,�i s.t. if i = 0, then
{⌧ : c(⌧) = 0} is dense and if i = 1, then c(⌧) = 1 for all ⌧ ⌫ �.

We have TT1
2 W V0 W V4. However, . . .

Theorem (Dzhafarov, Solomon, Valenti). V0 <W V4 and so TT1
2 <W V4.

In fact, V0 ⌘W TCN <W V4 ⌘W sTCN.
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Connections beyond RT1
k
W

1TT1
k
W TT1

k

Theorem (Dzhafarov, Solomon, Valenti). For every k � 2,

• RT1
j 6W TT1

k for j > k . Therefore,

TT1
2 <W TT1

3 <W TT1
4 <W · · ·

1TT1
2 <W

1TT1
3 <W

1TT1
4 <W · · ·

• 1TT1
k 6W RT1

j for every j , and therefore, TT1
k 6W RT1

j .

• TT1
k 6W RT1

N, and therefore, TT1
N 6W RT1

N.

• However, TT1
k W D2

k .
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Theorem (Dzhafarov, Solomon, Valenti). 1TT1
N W RT1

N

This result has a number of immediate corollaries.

• 1TT1
N ⌘W RT1

N

(since RT1
N W

1TT1
N W TT1

N)

• 1TT1
N <W TT1

N, so TT1
N is not equivalent to a first order problem

(since TT1
N 6W RT1

N)

• For every j , k � 2, TT1
k 6W

1TT1
j

(since 1TT1
j W

1TT1
N ⌘W RT1

N but TT1
k 6W RT1

N)

• 1TT1
k <W TT1

k , so TT1
k is not equivalent to a first order problem.
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Thank you!
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