Universal Sets for Projections

Don Stull Joint with Jacob Fiedler

University of Chicago

Geometric Measure Theory

- Size of small/irregular sets
- Fractal dimensions Hausdorff, packing, etc.

Algorithmic Randomness

- Inherent randomness of **points** (binary sequences)
- Computability theory

We can use computability theory to solve problems in **classical** geometric measure theory

- Let $x \in \mathbb{R}$ and $r \in \mathbb{N}$. The Kolmogorov complexity of x at precision r is
- $K_r(x) \approx$ Kolmogorov complexity of the first r bits of binary expansion of x = length of shortest program outputting the first r bits of the binary expansion of x.
 - Can generalize this to \mathbb{R}^n in the natural way.
 - Can relativize this to arbitrary oracles.

Let $n \in \mathbb{N}$, and $x \in \mathbb{R}^n$. The *(effective Hausdorff) dimension of x* is $\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r}.$

Let $n \in \mathbb{N}$, and $x \in \mathbb{R}^n$. The effective packing dimension of x is $\operatorname{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}.$

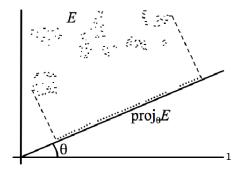
Theorem (J. Lutz and N. Lutz, '16)

For every set $E \subseteq \mathbb{R}^n$,

$$\dim_{H}(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \dim^{A}(x), \text{ and}$$
$$\dim_{P}(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \operatorname{Dim}^{A}(x).$$

• The Hausdorff and packing dimension of a *set* is characterized by the corresponding dimension of the *points* in the set.

Orthogonal Projections



If E is big, is it true that the projection of E is big?

In the plane, we parameterize orthogonal projections with the angle the line makes with the x-axis, so

$$p_{\theta} : \mathbb{R}^2 \to \mathbb{R}$$
$$p_{\theta}(x, y) = x \cos \theta + y \sin \theta.$$

イロト イポト イヨト イヨト

Theorem (Marstrand '54)

Let $E \subseteq \mathbb{R}^2$ be an analytic set with dim_H(E) = s. Then for almost every $\theta \in (0, 2\pi)$,

$$\dim_H(p_\theta E) = \min\{s, 1\}.$$

- Any subset of a line has Hausdorff dimension at most 1.
- Lipschitz functions (like p_{θ}) cannot increase the Hausdorff dimension of a set.
 - MPT shows that for a.e. angle, $\dim_H(p_{\theta}E)$ is maximal.
- Useful in many different problems in geometric measure theory
- (S. '21) Can weaken the assumption that *E* is analytic to the assumption that *E* has *optimal oracles*.

Theorem (Marstrand '54)

Let $E \subseteq \mathbb{R}^2$ be an analytic set with dim_H(E) = s. Then for almost every $\theta \in (0, 2\pi)$,

 $\dim_H(p_{\theta}E) = \min\{s,1\}.$

Definition: Let C be a class of subsets of \mathbb{R}^2 . We say a subset $S \subseteq [0, 2\pi)$ is *universal for* C if, for every $E \in C$, there is an angle $\theta \in S$ such that

 $\dim_H(p_\theta E) = \min\{s, 1\}.$

Question: Are there small universal sets?

Theorem (Fiedler, S.)

There is a Σ_1^1 -universal set S such that $\mu(S) = 0$.

• We actually prove that the set

$$S = \{\theta \in [0, 2\pi) \mid \theta \text{ is not ML random } \}.$$

is $\boldsymbol{\Sigma}_1^1$ -universal.

- We prove something slightly stronger: For every analytic set *E*, "most" directions in *S* satisfy Marstrand's theorem.
- We can weaken the class slightly the same theorem holds for the class C_{OO} of sets in \mathbb{R}^2 with *optimal oracles*.

Generalize this in two ways:

• Assuming more *regularity* we can construct smaller universal sets:

Theorem (Fiedler, S.)

Let \mathcal{A} be the class of Ahlfors-David regular sets of \mathbb{R}^2 . There is a \mathcal{A} -universal set S such that dim_H(S) = 0.

 Assuming the sets have lower dimension, we can construct smaller universal sets:

Theorem (Fiedler, S.)

Let C_s be the class of analytic sets with Hausdorff dimension at most s < 1. There is a C_s -universal set S such that $\dim_H(S) = s$.

11/12

Thank you!