
A proof-theoretical journey through
programming, model checking and

theorem proving

David Baelde

IT University of Copenhagen

ASL Meeting, Structural Proof Theory Session
Madison, Wisconsin, April 2012

1 / 26

Logic programming

A specification (Γ)

∀k . app nil k k
∀x∀l∀k∀m. app l k m ⊃ app (x :: l) k (x :: m)

Messy sequent calculus proofs

...
Γ,∀k∀m. app [4] k m ⊃ app [3; 4] k (3 :: m) ` app [0] nil [0]

Γ ` app [0] nil [0]

Γ, app nil [1; 2; 3] [1; 2; 3] ` app [0] nil [0]

Γ ` app [0] nil [0]

2 / 26

Logic programming

A specification (Γ)

∀k . app nil k k
∀x∀l∀k∀m. app l k m ⊃ app (x :: l) k (x :: m)

Focused proofs

Γ, app [0] nil [0] ` app [0] nil [0]

Γ, app nil nil nil ` app nil nil nil
Γ,∀k . app nil k k ` app nil nil nil

Γ ` app nil nil nil
Γ, app nil nil nil ⊃ app [0] nil [0] ` app [0] nil [0]

Γ,∀x∀k∀l∀m. . . . ` app [0] nil [0]

Γ ` app [0] nil [0]

3 / 26

Logic programming

A specification (Γ)

∀k . app nil k k
∀x∀l∀k∀m. app l k m ⊃ app (x :: l) k (x :: m)

Focused proofs

Γ ` app nil nil nil
∀L , init

Γ ` app [0] nil [0]
∀L ,⊃ L , init

4 / 26

Fixed Points

5 / 26

Computation
Rules

Γ ` B(µB)~t

Γ ` µB~t

Specification

app def
= µ(λAλlλkλm. (l = nil ∧ k = m)

∨ (∃x∃l′∃m′. l = x :: l′ ∧m = x :: m′ ∧ A l′ k m′))

Computing

` [0] = [0]
=R

` [0] = [0]
=R

` app nil nil nil
µR ,∨R ,=R

` [0] = [0] ∧ [0] = [0] ∧ app nil nil nil
∧R

` app [0] nil [0]
µR ,∨R ,∃R

6 / 26

Computation

Rules
Γ ` B(µB)~t

Γ ` µB~t

Specification

app def
= µ(λAλlλkλm. (l = nil ∧ k = m)

∨ (∃x∃l′∃m′. l = x :: l′ ∧m = x :: m′ ∧ A l′ k m′))

Computing

` app [0] nil [0]
µR ,∨R ,∃R ,=R

7 / 26

Finite reasoning

Rules

Γ,B(µB)~t ` P

Γ, µB~t ` P

Γ ` B(µB)~t

Γ ` µB~t

Reasoning by computing

x :: l = nil, k = nil `⊥ x :: l = x :: l′, nil = x :: m′, app l′ k m′ `⊥
app (x :: l) k nil ` ⊥

` ∀x, l, k . app (x :: l) k nil ⊃ ⊥

More examples: connectedness, path unicity, (bi)simulation. . .
for finite systems.

8 / 26

Finite reasoning

Rules

Γ,B(µB)~t ` P

Γ, µB~t ` P

Γ ` B(µB)~t

Γ ` µB~t

Reasoning by computing

...
` node C

. . .

...
` path C Ni . . .

` ∀N. node N ⊃ path C N
` ∃C . node C ∧ ∀N. node N ⊃ path C N

More examples: connectedness, path unicity, (bi)simulation. . .
for finite systems.

9 / 26

Infinity (identity)

Rules

Γ,B(µB)~t ` P

Γ, µB~t ` P

Γ ` B(µB)~t

Γ ` µB~t

Γ, µB~t ` µB~t

Example

nat x ` nat x
nat x ` nat (s10 x)

nat x ` nat (s10 x)

nat (s3 x) ` nat (s10 x)

10 / 26

Infinity (identity)

Rules

Γ,B(µB)~t ` P

Γ, µB~t ` P

Γ ` B(µB)~t

Γ ` µB~t

Γ, µB~t ` P

Γ, µB~t ` P Γ, µB~t ` µB~t

Example

nat x ` nat x
nat x ` nat (s10 x)

nat x ` nat (s10 x)

nat (s3 x) ` nat (s10 x)

11 / 26

Infinity (identity)

Rules

Γ,B(µB)~t ` P

Γ, µB~t ` P

Γ ` B(µB)~t

Γ ` µB~t

Γ, µB~t ` P

Γ, µB~t ` P Γ, µB~t ` µB~t

Example

nat x ` nat x
nat x ` nat (s10 x)

nat x ` nat (s10 x)

nat (s3 x) ` nat (s10 x)

12 / 26

Infinity (induction)

Rules
Γ,S~t ` P BS~x ` S~x

Γ, µB~t ` P

Γ ` B(µB)~t

Γ ` µB~t

Γ, µB~t ` P

Γ, µB~t ` P Γ, µB~t ` µB~t

Example (Derived rules for nat)

nat x def
= µ(λNλx. x = 0 ∨ ∃y. x = s y ∧ N y)x

Γ ` nat 0
Γ ` nat x

Γ ` nat (s x)

` P 0 P y ` P (s y) Γ,P x ` G
Γ, nat x ` G

13 / 26

Infinity (coinduction)
Rules

Γ ` S~t S~x ` BS~x
Γ ` νB~t

Γ,B(νB)~t ` P

Γ, νB~t ` P

Γ ` νB~t
Γ ` νB~t Γ, νB~t ` νB~t

Example (Derived rules for sim)

sim def
= ν(λSλpλq. ∀α∀p′.step p α p′ ⊃ ∃q′.step q α q′ ∧ S p′ q′)

Γ ` step p α p′ Γ, step q α q′, sim p′ q′ ` P
Γ, sim p q ` P

Γ ` R p q R p q, step p α p′ ` ∃q′. step q α q′ ∧ R p′ q′

Γ ` sim p q

14 / 26

Fixed Points in Proof Theory

Foundations
I Natural generic rules, various ambient calculi
I Completeness of focused systems [Baelde & Miller ’07]
I Cut elimination [Baelde ’10]
I Game semantics for µLJ proofs [Clairambault ’09]

Related Work

I Definitions (SH 93, MM 00, MT 03)
I Type theory (Mendler 91, Matthes 99, Paulin)
I Cyclic proofs (. . . Santocanale 01, Brotherston 05)
I µ-calculus, Kleene algebras. . .

15 / 26

Applications

Abella & Tac

I Interactive theorem provers for µLJ
I Extensions for reasoning about binding (esp. Abella)
I Tac: automated focused (co)inductive theorem proving

Bedwyr

I “model checking” over syntactic specifications
I finite behavior proofs, “prolog + exhaustive case analyses”
I example: bisimulation checker for π, spi (Miller & Tiu, Tiu)
I tabling and cyclic proofs

16 / 26

Proof & Verification

. . . not “proof ⊗ verification”.

17 / 26

Motivations

Practical

I Independently checkable certificates
I Not too ad-hoc, composable: proofs
I Compute: run a certificate on examples (synthesis)
I Interoperate: mix automatic and interactive theorem proving,

certify abstraction and verify it, combine partial correctness
and termination. . .

Fundamental

I Completeness, decidability results, proof structures
I More algebraic viewpoint on automata techniques

18 / 26

Model-checking

Verification

I Does a system satisfy a specification?
I M |= S
I Often translated to automata inclusion [M] ⊆ [S]

How do you prove an inclusion?

[M]x ` [S]x

What is the structure of inclusion?

19 / 26

NFA: Definitions

Non-deterministic finite automata

I Alphabet Σ = {α, β, γ, . . .}

I Finite set of states
I Distinguished initial and final states
I Transition relation s →α q

Definition
If Q is a set of states,
Q →α Q ′ iff each state of Q ′ is reachable from Q .
In other words, Q ′ ⊆ α−1Q .

20 / 26

Structure of inclusion

Definition (Multi-simulation)
A multi-simulation between two automata (A ,T , I,F) and
(B ,T ′, I′,F ′) is a relation< ⊆ A ×℘(B) such that whenever p<Q :
I if p is final, then there must be a final state in Q ;
I for any α and p′ such that p →α p′

there exists Q ′ such that Q →α Q ′ and p′<Q ′.

Multi-simulations are post-fixed points.
There is a greatest one: call it multi-similarity.

Proposition (Multi-similarity is inclusion)
L(p) ⊆ L(Q) if and only if p<Q for some multi-simulation<.

21 / 26

Example: ∀x. nat x ⊃ even x ∨ odd x

Consider the following two automata:

GFED@ABCp0
α // GFED@ABCp1

α //

β
TT

GFED@ABC?>=<89:;p2 GFED@ABCq0
α //

α ��
@@

@@
@@
GFED@ABCq1

β ��

α // GFED@ABC?>=<89:;q2

GFED@ABCq′1

β
OO

State p0 is included in q0. Proof:

< = {(p0, {q0}), (p1, {q1, q′1}), (p2, {q2})}

22 / 26

Example: ∀x. nat x ⊃ ∃h. half x h

GFED@ABCps
z //

s
TT

GFED@ABC?>=<89:;pz GFED@ABCqs
z //

s

AA

AA
AA

s ��

GFED@ABC?>=<89:;qz

GFED@ABCq′′s

s
FF

GFED@ABCq′s
z // GFED@ABC?>=<89:;q′z

Proof of L(ps) ⊆ L(qs):

< = {(ps , {qs}), (ps , {q′s , q
′′
s }), (pz , {qz}), (pz , {q′z})}

23 / 26

Extended cyclic proofs / tabled search

` even 0

∞

nat y ` odd y
nat y ` even (sy)

nat x ` even x ⊕

⊥

` odd 0

∞

nat y ` even y
nat y ` odd (sy)

nat x ` odd x
nat x ` even x ⊕ odd x

This is not quite a proof but realizes one:
the underlying automata covers all cases, i.e., contains nat .

> nat y ` odd y

))

nat y ` even y

uu

⊥

nat x ` even x

s

OO

0

ffMMMMMMMMMMMM
nat x ` odd x

s

OO
0

88qqqqqqqqqqqq

Semi-decidability, generating invariants and µLJ proofs

24 / 26

Extended cyclic proofs / tabled search

` even 0

∞

nat y ` odd y
nat y ` even (sy)

nat x ` even x ⊕

⊥

` odd 0

∞

nat y ` even y
nat y ` odd (sy)

nat x ` odd x
nat x ` even x ⊕ odd x

This is not quite a proof but realizes one:
the underlying automata covers all cases, i.e., contains nat .

> nat y ` odd y

))

nat y ` even y

uu

⊥

nat x ` even x

s

OO

0

ffMMMMMMMMMMMM
nat x ` odd x

s

OO
0

88qqqqqqqqqqqq

Semi-decidability, generating invariants and µLJ proofs

25 / 26

Conclusion

Proof theory of fixed points

I Very rich logics
I Precise proof theoretical analysis
I Wider range of applications, supported by focusing

More proof & verification

I Extend: Büchi, tree and alternating automata
I Automated (co)inductive reasoning, loop schemes in Bedwyr

26 / 26

	Fixed points
	Proof and Verification
	Conclusion

