A proof-theoretical journey through
programming, model checking and
theorem proving

David Baelde

IT University of Copenhagen

ASL Meeting, Structural Proof Theory Session
Madison, Wisconsin, April 2012

26

Logic programming

A specification (I')

Vk. app nil k k
VxVYIVKYm. applk m>app (x :: [) k (x :: m)

Messy sequent calculus proofs

I,Yk¥m. app [4] Kk m > app [3;4] k (3 :: m) + app [0] nil [0]
I + app [0] nil [0]
I, app nil [1;2; 3] [1;2;3] + app [0] nil [0]
I+ app [0] nil [O]

Logic programming
A specification (')

Vk. app nil k k
VxYIVkYm. applk m>app (x :: 1) k (x :: m)

Focused proofs

I, app nil nil nil + app nil nil nil
I, Vk. app nil k k + app nil nil nil
I, app [0] nil [0] + app [O] nil [O] I+ app nil nil nil
I, app nil nil nil > app [0] nil [0] + app [0] nil [O]
[,VxVKYIVm. ...+ app [0] nil [O]
I+ app [0] nil [O]

26

Logic programming

A specification (I')

Vk. app nil k k
VxVYIVKYm. app lk m> app (x ::) k (x :: m)

Focused proofs

[" + app nil nil nil VL, init
I+ app [0] nil [O] VL5 L, init

Fixed Points

5/26

Computation

Rules
[+ B(uB)f
I+ uBt

Specification

app & p(AAMAKAmM. (1= nil Ak = m)
Y AxA'AM’ . I=x=lAm=x:m AAI' km))

Computing
=0 " rpr=p0] " rappainian %R
0 = = il nil nil
+ [0] = [0] A [0] = [0] A app nil nil ni JRVR AR

+ app [0] nil [O]

Computation

Rules
[+ B(uB)f
M+ uBf

Specification
app & p(AANAKAmM. (1= nil Ak = m)

v (AxArAm’. I=x=zl'Am=x:m AAl'km))

Computing

———— uR,vR, 3R, =R
l—app[O]nil[O]M’ Y

/26

Finite reasoning

Rules

rBuB)YrP TrBuB)
ruBfr P [+ uBt

Reasoning by computing

xul=nilbk=niltL x:l=x:lnil=x:m,appl' k mrL

app (x :: 1) k nil + L
FVx, I k.app (x 1) k nil > L

More examples: connectedness, path unicity, (bi)simulation. . .
for finite systems.

26

Finite reasoning

Rules

[LB(uB)YrP TrBuB)f
MuBtr P M+ uBt

Reasoning by computing

F path C N;
F node C rVYN.node N>path CN
+ 3C. node C A YN. node N > path C N

More examples: connectedness, path unicity, (bi)simulation. . .

for finite systems.

26

Infinity (identity)

Rules

[,B(uB){+P T+ B(uB)f
ruBtrP [+ uBf

F,/JB?!— ,uBf)

10/26

Infinity (identity)

Rules

[,B(uB){+P T+ B(uB)f
ruBtrP [+ uBf
ruBfr P
CuBf+ P T,uBfr uBf

11/26

Infinity (identity)

Rules
[,B(uB){+P T+ B(uB)f
ruBtrP [+ uBf
ruBfr P
CuBf+ P T,uBfr uBf
Example

nat x + nat x
nat x + nat (s'° x)

nat x v nat (s'° x)
nat (s3 x) r nat (s'° x)

12/26

Infinity (induction)

Rules
r,Str P BSXrSx T+ B(uB)i
M uBfr P I+ uBt
ruBfr P
M uBfr P I, uBf r uBt

Example (Derived rules for nat)

natxdﬁfu(/lN/lx.x:O\/Hy.x:sy/\Ny)x

I+ nat x
'+ nat 0 I+ nat (s x)

FPO Py+P(sy) ILPxrG
Mnatxt+ G

13/26

Infinity (coinduction)

Rules
rvst SirBSx [.B(vB)i+P
[+ vBf r,vBir P
[+ vBf
[+ vBf r,vBir vBf

Example (Derived rules for sim)

sim &' v(ASApAq. YaVp'.steppap’ D Aq .stepgqa g ASp’ q)

M-steppap T,stepqaq,simp’q +P
simpqgtr P

l-Rpqg Rpag,steppap ' +1q9.stepqaqg ARpP' q
N-simpq

14/26

Fixed Points in Proof Theory

Foundations
» Natural generic rules, various ambient calculi
» Completeness of focused systems [Baelde & Miller '07]
» Cut elimination [Baelde *10]
» Game semantics for ulLJ proofs [Clairambault '09]

Related Work

» Definitions (SH 93, MM 00, MT 03)

» Type theory (Mendler 91, Matthes 99, Paulin)

» Cyclic proofs (...Santocanale 01, Brotherston 05)
» u-calculus, Kleene algebras. . .

15/26

Applications

Abella & Tac

» Interactive theorem provers for ulLJ
» Extensions for reasoning about binding (esp. Abella)
» Tac: automated focused (co)inductive theorem proving

Bedwyr

» “model checking” over syntactic specifications

» finite behavior proofs, “prolog + exhaustive case analyses”
» example: bisimulation checker for , spi (Miller & Tiu, Tiu)
» tabling and cyclic proofs

16/26

Proof & Verification

... not “proof ® verification”.

17/26

Motivations

Practical

» Independently checkable certificates
» Not too ad-hoc, composable: proofs
» Compute: run a certificate on examples (synthesis)

» Interoperate: mix automatic and interactive theorem proving,
certify abstraction and verify it, combine partial correctness
and termination. ..

Fundamental

» Completeness, decidability results, proof structures
» More algebraic viewpoint on automata techniques

18/26

Model-checking

Verification

» Does a system satisfy a specification?
» MES
» Often translated to automata inclusion [M] C [S]

How do you prove an inclusion?
[M]x + [S]x

What is the structure of inclusion?

19/26

NFA: Definitions

Non-deterministic finite automata
» Alphabet ¥~ = {a,8,v,...}
» Finite set of states
» Distinguished initial and final states
» Transition relation s —»¢ q

Definition
If Q is a set of states,

Q —* Q' iff each state of Q’ is reachable from Q.

In other words, Q" C e~ 'Q.

20/26

Structure of inclusion

Definition (Multi-simulation)

A multi-simulation between two automata (A, T, I, F) and
(B, T',I',F") is arelation R C A x p(B) such that whenever pRQ:

» if p is final, then there must be a final state in Q;

» for any @ and p’ such that p - p’
there exists Q" such that Q —»* Q" and p’RQ".

Multi-simulations are post-fixed points.
There is a greatest one: call it multi-similarity.

Proposition (Multi-similarity is inclusion)
L(p) € £(Q) if and only if pRQ for some multi-simulation K.

21/26

Example: Vx. nat x D even x v odd x

Consider the following two automata:

®

Al
M

&& L,g
‘ BB

a

State pg is included in qg. Proof:

R = {(po, {q0}), (P1.{q1. G} }), (P2, {G2})}

22/26

Example: Vx. nat x D dh. half x h

Proof of £(ps) € £(gs):

R = {(ps, {Gs}), (s> 95, G5)), (P2, 1G2)), (P2, (G2)))

23/26

Extended cyclic proofs / tabled search

[S]

nat y + odd y

L

. ©
natyreveny

Feven0 natyt even(sy)

Fodd0 naty+ odd (sy)

nat x + even x

@

nat x + odd x

nat x + even x ® odd x

24/26

Extended cyclic proofs / tabled search

[S]

nat y + odd y

L

. ©
natyreveny

Feven0 natyt even(sy)

Fodd0 naty+ odd (sy)

nat x + even x

@

nat x + odd x

nat x + even x ® odd x

This is not quite a proof but realizes one:
the underlying automata covers all cases, i.e., contains nat.

T nat y + odd

nat X + even x

naty+ eveny 1

,:;f; T /

nat x + odd x

Semi-decidability, generating invariants and uLJ proofs

25/26

Conclusion

Proof theory of fixed points

» Very rich logics
» Precise proof theoretical analysis
» Wider range of applications, supported by focusing

More proof & verification

» Extend: Buchi, tree and alternating automata
» Automated (co)inductive reasoning, loop schemes in Bedwyr

26/26

	Fixed points
	Proof and Verification
	Conclusion

