A proof-theoretical journey through programming, model checking and theorem proving

David Baelde

IT University of Copenhagen

ASL Meeting, Structural Proof Theory Session Madison, Wisconsin, April 2012

Logic programming

A specification (Γ)

[∀]k. app nil k k [∀]x∀l∀k∀m. app l k m [⊃] app (^x :: ^l) ^k (^x :: ^m)

Messy sequent calculus proofs

$$
\frac{\cfrac{\cfrac{\cdot}{\sqrt{1.5}}}{\cfrac{\cdot}{\sqrt{1.5}}}{\cfrac{\sqrt{1.5}}{1.5}}}{\cfrac{\cfrac{\sqrt{1.5}}{1.5}}{\cfrac{\sqrt{1.5}}{1.5}}}{\cfrac{\cfrac{\sqrt{1.5}}{1.5}}{\cfrac{\sqrt{1.5}}{1.5}}}{\cfrac{\cfrac{\sqrt{1.5}}{1.5}}{\cfrac{\sqrt{1.5}}{1.5}}}{\cfrac{\sqrt{1.5}}{1.5}}}
$$

Logic programming

A specification (Γ)

[∀]k. app nil k k [∀]x∀l∀k∀m. app l k m [⊃] app (^x :: ^l) ^k (^x :: ^m)

Focused proofs

Γ, app $[0]$ nil $[0]$ \vdash app $[0]$ nil $[0]$ $Γ$, app nil nil nil $∈$ app nil nil nil $Γ, ∀k.$ app nil k $k \vdash$ app nil nil nil $Γ$ + app nil nil nil Γ, app nil nil nil \supset app $[0]$ nil $[0]$ \vdash app $[0]$ nil $[0]$ Γ, \forall *x* \forall *k* \forall *I* \forall *m.* ... \vdash app [0] nil [0] $Γ ⊢ app [0] nil [0]$

Logic programming

A specification (Γ)

[∀]k. app nil k k [∀]x∀l∀k∀m. app l k m [⊃] app (^x :: ^l) ^k (^x :: ^m)

Focused proofs

$$
\frac{\Gamma \vdash \text{app nil nil nil}}{\Gamma \vdash \text{app [0] nil [0]}} \frac{\forall L, init}{\forall L, \supset L, init}
$$

Fixed Points

Computation

Rules

 $\frac{\Gamma \vdash B(\mu B)f}{\Gamma \vdash B \rightarrow B}$ $Γ ⊢ μB^t$

Specification

$$
app \stackrel{\text{def}}{=} \mu(\lambda A \lambda l \lambda k \lambda m. \quad (l = nil \wedge k = m)
$$

$$
\vee \qquad (\exists x \exists l' \exists m'. l = x :: l' \wedge m = x :: m' \wedge A l' k m'))
$$

Computing

` [0] = [0] =R ` [0] = [0] =R ` app nil nil nil ^µR, [∨]R, ⁼^R ` [0] = [0] [∧] [0] = [0] [∧] app nil nil nil [∧]^R ` app [0] nil [0] µR, [∨]R, [∃]^R

Computation

Rules

 $\frac{\Gamma \vdash B(\mu B)f}{\Gamma \vdash B \rightarrow B}$ $Γ ⊢ μB^t$

Specification

$$
app \stackrel{\text{def}}{=} \mu(\lambda A \lambda l \lambda k \lambda m. \quad (l = nil \wedge k = m)
$$

$$
\vee \qquad (\exists x \exists l' \exists m'. \ l = x :: l' \wedge m = x :: m' \wedge A l' k m'))
$$

Computing

` app [0] nil [0] µR, [∨]R, [∃]R, ⁼^R

Finite reasoning

Rules

$$
\frac{\Gamma, B(\mu B)\vec{t} \vdash P}{\Gamma, \mu B\vec{t} \vdash P} \qquad \frac{\Gamma \vdash B(\mu B)\vec{t}}{\Gamma \vdash \mu B\vec{t}}
$$

Reasoning by computing

$$
\overline{x:: l = nil, k = nil \vdash \bot \quad x:: l = x:: l', nil = x:: m', app l' k m' \vdash \bot}
$$
\n
$$
\frac{app (x:: l) k nil \vdash \bot}{\vdash \forall x, l, k. app (x:: l) k nil \supset \bot}
$$

More examples: connectedness, path unicity, (bi)simulation... for finite systems.

Finite reasoning

Rules

Reasoning by computing

More examples: connectedness, path unicity, (bi)simulation... for finite systems.

Infinity (identity)

Rules

 $\sqrt{\Gamma, \mu B \vec{t} + \mu B \vec{t}}$

Infinity (identity)

Rules

Infinity (identity)

Rules

Example

nat $x \text{ }\mathsf{r}$ nat x nat $x \vdash nat$ (s¹⁰ x) nat $x \vdash nat$ (s¹⁰ x) nat $(s^3 x)$ + nat $(s^{10} x)$

Infinity (induction)

Rules

$$
\frac{\Gamma, S\vec{t} \vdash P \quad BS\vec{x} \vdash S\vec{x}}{\Gamma, \mu B\vec{t} \vdash P} \quad \frac{\Gamma \vdash B(\mu B)\vec{t}}{\Gamma \vdash \mu B\vec{t}}
$$
\n
$$
\frac{\Gamma, \mu B\vec{t} \vdash P}{\Gamma, \mu B\vec{t} \vdash P} \quad \frac{\Gamma, \mu B\vec{t} \vdash B\vec{t}}{\Gamma, \mu B\vec{t} \vdash \mu B\vec{t}}
$$

Example (Derived rules for nat)

nat
$$
x \stackrel{\text{def}}{=} \mu(\lambda N\lambda x. x = 0 \vee \exists y. x = s y \wedge N y)x
$$

\n
$$
\frac{\Gamma \vdash nat x}{\Gamma \vdash nat 0} \qquad \frac{\Gamma \vdash nat x}{\Gamma \vdash nat (s x)}
$$
\n
$$
\frac{\vdash P 0 \quad P y \vdash P (s y) \quad \Gamma, P x \vdash G}{\Gamma, nat x \vdash G}
$$

Infinity (coinduction)

Rules

Example (Derived rules for sim)

sim $\stackrel{\text{def}}{=}$ ν(λSλpλq. ∀α∀p′.step p α p′ ⊃ ∃q′.step q α q′ ∧ S p′ q′)

 Γ + step p α p' Γ , step q α q', sim p' q' + P $Γ, sim p a ⊢ P$ Γ + R p q R p q, step p α p' + ∃q'. step q α q' ∧ R p' q' $Γ$ \vdash sim p q

Fixed Points in Proof Theory

Foundations

- \triangleright Natural generic rules, various ambient calculi
- ► Completeness of focused systems [Baelde & Miller '07]
- \triangleright Cut elimination [Baelde '10]
- Game semantics for μ LJ proofs [Clairambault '09]

Related Work

- \triangleright Definitions (SH 93, MM 00, MT 03)
- \blacktriangleright Type theory (Mendler 91, Matthes 99, Paulin)
- \triangleright Cyclic proofs (... Santocanale 01, Brotherston 05)
- \blacktriangleright μ -calculus, Kleene algebras...

Applications

Abella & Tac

- Interactive theorem provers for μ LJ
- Extensions for reasoning about binding (esp. Abella)
- \blacktriangleright Tac: automated focused (co)inductive theorem proving

Bedwyr

- \triangleright "model checking" over syntactic specifications
- \blacktriangleright finite behavior proofs, "prolog + exhaustive case analyses"
- **Example: bisimulation checker for** π **, spi (Miller & Tiu, Tiu)**
- \blacktriangleright tabling and cyclic proofs

Proof & Verification

. . . not "proof ⊗ verification".

Motivations

Practical

- \blacktriangleright Independently checkable certificates
- \triangleright Not too ad-hoc, composable: proofs
- \triangleright Compute: run a certificate on examples (synthesis)
- Interoperate: mix automatic and interactive theorem proving, certify abstraction and verify it, combine partial correctness and termination. . .

Fundamental

- \triangleright Completeness, decidability results, proof structures
- \triangleright More algebraic viewpoint on automata techniques

Model-checking

Verification

- \triangleright Does a system satisfy a specification?
- $\blacktriangleright M \models S$
- \triangleright Often translated to automata inclusion $[M] \subseteq [S]$

How do you prove an inclusion?

 $[M]x \vdash [S]x$

What is the structure of inclusion?

NFA: Definitions

Non-deterministic finite automata

- Alphabet $\Sigma = {\alpha, \beta, \gamma, \ldots}$
- \blacktriangleright Finite set of states
- \triangleright Distinguished initial and final states
- ► Transition relation $s \rightarrow^{\alpha} q$

Definition

If Q is a set of states. $Q \rightarrow^{\alpha} Q'$ iff each state of Q' is reachable from Q . In other words, $Q' \subseteq \alpha^{-1}Q$.

Structure of inclusion

Definition (Multi-simulation)

A multi-simulation between two automata (A, T, I, F) and (B, T', I', F') is a relation $\mathcal{R} \subseteq A \times \wp(B)$ such that whenever $p\mathcal{R}Q$:

- if p is final, then there must be a final state in Q ;
- if for any α and p' such that $p \rightarrow a p'$
there exists O' such that $Q \rightarrow a Q'$ there exists Q' such that $Q \rightarrow^{\alpha} Q'$ and $p' \mathbb{R} Q'$.

Multi-simulations are post-fixed points. There is a greatest one: call it multi-similarity.

Proposition (Multi-similarity is inclusion) $\mathcal{L}(p) \subseteq \mathcal{L}(Q)$ if and only if pRQ for some multi-simulation R. Example: $\forall x$. nat $x \supset e$ ven $x \vee$ odd x

Consider the following two automata:

State p_0 is included in q_0 . Proof:

 $\mathfrak{R} = \{ (p_0, \{q_0\}), (p_1, \{q_1, q_1'\})$ $\binom{1}{1}, (p_2, \{q_2\})$ Example: $\forall x$. nat $x \supset \exists h$. half x h

Proof of $\mathcal{L}(p_s) \subseteq \mathcal{L}(q_s)$:

 $\mathfrak{R} = \{ (p_{\rm s}, \{q_{\rm s}\}), (p_{\rm s}, \{q_{\rm s}', q_{\rm s}''\}), (p_{\rm z}, \{q_{\rm z}\}), (p_{\rm z}, \{q_{\rm z}'\}) \}$

Extended cyclic proofs / tabled search

nat $x \vdash$ even $x \oplus$ odd x

Extended cyclic proofs / tabled search

nat $x \vdash$ even $x \oplus$ odd x

This is not quite a proof but realizes one:

the underlying automata covers all cases, i.e., contains nat.

Semi-decidability, generating invariants and μLJ proofs

Conclusion

Proof theory of fixed points

- \triangleright Very rich logics
- \blacktriangleright Precise proof theoretical analysis
- \triangleright Wider range of applications, supported by focusing

More proof & verification

- \blacktriangleright Extend: Büchi, tree and alternating automata
- \triangleright Automated (co)inductive reasoning, loop schemes in Bedwyr