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Abelian integrals

∫
w dz

where w ∈ acl(C(z)).
i.e. ∫

ω

where ω is a meromorphic differential form on a Riemann
surface C.
e.g. ∫

dz√
z3 + az + b

=

∫
dz
w

on E := {w2 = z3 + az + b}.
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Abelian integrals

Multifunction Iω : C(C)2 → C

Iω(P,Q) =

∫ Q

P
ω,

value depends on path from P to Q on C.
Status of C∫

ω :=< C; +, ·, Iω >?
Example: ω = dz

z on C = P1

I
∫ b

1
dz
z = exp−1(b) = ln(b) + 2πiZ

I
∫ b

a
dz
z = exp−1(b)− exp−1(a) = ln(b)− ln(a) + 2πiZ

I So C∫
ω interdefinable with Cexp =< C; +, ·,exp >.

I Zilber: conjectural categorical description of Cexp.
I Involves transcendence conjectures - e.g. ee ∈ Q?
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Abelian integrals of the first kind

Suppose ω ∈ Ω := space of holomorphic differential
forms on a Riemann surface C.
Say ω = ω1, . . . , ωg basis for Ω, where g = genus(C).
Fix P0 ∈ C(C).

Fact (Abel, Jacobi)

C embeds in its Jacobian J = Pic0(C) such that(∫ Q

P0

ω1, . . . ,

∫ Q

P0

ωg

)
= π−1(Q)

where π : Cg � J(C) is a homomorphism with kernel a
lattice (the periods).

Status of < C; +, ·, π >?
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Linear reduct
Let O := {η ∈ Matg(C) | η(ker(π)) ≤ ker(π)} ∼= End(J).
Let O0 := Q⊗Z O.
Consider Cg as a new sort with just the O0-module
structure:

Cov(J) :=

〈 〈
Cg ; +, (η)η∈O0

〉
π : Cg → J(C)
〈C; +, ·〉

〉

Lemma

TJ := Th(Cov(J)) has quantifier elimination and
axiomatisation:〈

Cg+, (η)η∈O0

〉
is a O0-module;

π is a surjective O-homomorphism;
〈C; +, ·〉 |= ACF0 .
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Categoricity

Theorem (Categoricity over ker(π))

Suppose J is defined over a number field. Then Cov(J) is
specified up to isomorphism by:

its first order theory TJ ;
its cardinality;
the isomorphism type of ker(π).

I Zilber: analogous statement for Gm.
I Gavrilovich: similar statement, but assuming

2ℵ0 = ℵ1.
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Atomicity

B ⊆ C finite algebraically independent

MB := π−1(J(acl(B))) � Cov(J).

Lemma (Atomicity)

MB is atomic, hence unique, over
⋃

B′(BMB′ .

Categoricity theorem follows: Cov(J) is built uniquely
over a transcendence basis of C.
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Proof

Equivalent by QE:

Lemma (Atomicity)

I a ∈ J(acl(B));
I ai in simple subgroups, no O-linear relations;
I k∂ :=

⋃
B′(B acl(B′);

Then exist only finitely many types

tpACF((an)n/k∂).
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finitely many isomorphism classes; hence reduce to
bounding rational points in J as in Step I.
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Questions

I Can we relax the assumption that J is over a number
field?

I Can we handle semiabelian varieties, and arbitrary
abelian integrals?

I Intermediate reducts - status of
I Complex field + Q 7→

∫ Q
P0
ω for a single ω as a map to

a group?
I Complex field + set Ω + pairing∫ ·

P0
· : C(C)× Ω→< C; + >?

I Algebra structure on the integrals - e.g. two-field
exponentiation < C; +, · >�exp< C; +, · >?
(trd(log2, log3) = 2?)

I Graded version?
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