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Abelian integrals
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Abelian integrals
Multifunction [, : C(C)? — C

(@]
L,(P, Q) :/ w,
P

value depends on path from P to Q on C.
Status of C, :=< C;+,-, L, >?

Example: w = % on C = P!

. ‘1" 9 — exp~'(b) = In(b) + 27iZ
J2 & = exp~'(b) — exp~'(a) = In(b) — In(a) + 2niZ

So Cru interdefinable with Ceyxp =< C; +, -, €Xp >.
Zilber: conjectural categorical description of Ceyp.
Involves transcendence conjectures - e.g. e € Q?
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Abelian integrals

Multifunction 1, : C(C)? — C

Q
L(P,Q) :/ o,
P

value depends on path from Pto Q on C.

Status of wa =< C;+,, L, >?

Example: w = % on C = P

2% _ exp1(b) = In(b) + 2riZ

> b % = exp~'(b) — exp~'(a) = In(b) — In(a) + 2iZ
> So wa interdefinable with Ceyxp =< C; +, -, exp >.

» Zilber: conjectural categorical description of Cexp.

>

» Involves transcendence conjectures - e.g. e € Q7?



Abelian integrals of the first kind

Suppose w € Q := space of holomorphic differential
forms on a Riemann surface C.

Say w = wy,...,wg basis for Q, where g = genus(C).
Fix Py € C(C).

C embeds in its Jacobian J = Pic®(C) such that

Q )
</ M/ wg> — =~ 1(Q)
J Py J Py

where 7 : C9 — J(C) is a homomorphism with kernel a
lattice (the periods).

Status of < C; +, -, 7 >7?



Abelian integrals of the first kind

Suppose w € Q := space of holomorphic differential
forms on a Riemann surface C.

Say w = wy,...,wqy basis for Q, where g = genus(C).
Fix Py € C(C).

Fact (Abel, Jacobi)
C embeds in its Jacobian J = Pic®(C) such that

(/:w1,...,/:wg> —)

where 7 : C9 — J(C) is a homomorphism with kernel a
lattice (the periods).

Status of < C; +, -, >?



Abelian integrals of the first kind

Suppose w € Q := space of holomorphic differential
forms on a Riemann surface C.

Say w = wy,...,wqy basis for Q, where g = genus(C).
Fix Py € C(C).

Fact (Abel, Jacobi)
C embeds in its Jacobian J = Pic®(C) such that

(/:w1,...,/:wg> —)

where 7 : C9 — J(C) is a homomorphism with kernel a
lattice (the periods).

Status of < C; +, -, 7 >7?



Linear reduct

structure:

Let O := {n € Maty(C) | n(ker(m)) < ker(7)} = End(J)
Let O := Q ®z O.
Consider C9Y as a new sort with just the ©°-module

<(Cg; -+, (7])7)€OO>
Cov(J) := < m:C9 — J(C) >
<C; -+, >

Ty := Th(Cov(J)) has quantifier elimination and
axiomatisation:

(CI9+, (n)yeo0) is a O°-module;
m IS a surjective O-homomorphism;

(C;+,-) = ACFy .
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Linear reduct

Let O := {n € Maty(C) | n(ker(m)) < ker(r)} = End(J).
Let O := Q ®z O.
Consider CY as a new sort with just the ©°-module

structure:
<Cg; =+, (77)776(90>
Cov(J):=( m:C9— J(C)
<(C; = >
Lemma

T, := Th(Cov(J)) has quantifier elimination and
axiomatisation:
(CI9+, (n)yeon) is a O°-module;

7 IS a surjective O-homomorphism;
(C;+,-) = ACFy .



Categoricity

Theorem (Categoricity over ker(7))
Suppose J is defined over a number field. Then Cov(J) is
specified up to isomorphism by:

its first order theory T;

its cardinality;

the isomorphism type of ker(r).

Zilber: analogous statement for G .

Gavrilovich: similar statement, but assuming
2% — N1,
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Atomicity

B C C finite algebraically independent

Mg = 7""1(J(acl(B))) = Cov(J).

M is atomic, hence unique, over | Jg g Mp.

Categoricity theorem follows: Cov(J) is built uniquely
over a transcendence basis of C.
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Proof

Equivalent by QE:

Lemma (Atomicity)
» acJ(acl(B));
» a; in simple subgroups, no O-linear relations;
> ky :=Ugcpacl(B');

Then exist only finitely many types

to°F((@n)n/ks)-
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» k= ky(a)
Step | (“Mordell-Weil”): Bound n such that a, € J(k);
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Step lla Find number field ky such that J and all Z, may be
taken over ky;
By Faltings, the isogenous quotients Y/ fall into
finitely many isomorphism classes; hence reduce to
bounding rational points in J as in Step |.
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Proof.

Step | (“Mordell-Weil”): Bound n such that a, € J(k); and
moreover such that na, € J(k) forn € O.
Step la Inductively specialise to “lower-dimensional
simplices”
Appeal to Lang-Néron’s function-field Mordell-Weil,
or to B-Gavrilovich-Hils.

Step Il (“Kummer”): More generally, bound k-rational
imaginaries a, + Z, for subgroups Z, < Tor,(J) - i.e.
bound index [Tor,(J) : Zp).

Step lla Find number field ky such that J and all Z, may be
taken over ky;

Step llb By Faltings, the isogenous quotients Y/, fall into
finitely many isomorphism classes; hence reduce to
bounding rational points in J as in Step .

Ol



Proof

Proof.

Step | (“Mordell-Weil”): Bound n such that a, € J(k); and
moreover such that na, € J(k) forn € O.
Step la Inductively specialise to “lower-dimensional
simplices”
Step lla Appeal to Lang-Néron’s function-field Mordell-Weil,
or to B-Gavrilovich-Hils.

Step Il (“Kummer”): More generally, bound k-rational
imaginaries a, + Z, for subgroups Z, < Tor,(J) - i.e.
bound index [Tor,(J) : Zp).

Step lla Find number field ky such that J and all Z, may be
taken over ky;

Step llb By Faltings, the isogenous quotients Y/, fall into
finitely many isomorphism classes; hence reduce to
bounding rational points in J as in Step .

Ol



Questions

» Can we relax the assumption that J is over a number
field?

» Can we handle semiabelian varieties, and arbitrary

abelian integrals?

Intermediate reducts - status of
Complex field + Q — ./é)w for a single w as a map to
a group?
Complex field + set Q + pairing
Jp, 1 C(C) x @ =< C; + >7?
Algebra structure on the integrals - e.g. two-field
exponentiation < C; +, - >—»*P< C; +,- >?
(trd(log2, log3) = 2?)
Graded version?
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