Abelian Integrals and Categoricity

Martin Bays

April 2, 2012

$$\int w \, dz$$

where $w \in acl(\mathbb{C}(z))$. i.e.

where ω is a meromorphic differential form on a Riemann surface ${\it C}.$

e.g.

$$\int \frac{dz}{\sqrt{z^3 + az + b}} = \int \frac{dz}{w}$$

on $E := \{w^2 = z^3 + az + b\}.$

・ロト・日下・日下・ 日・ つへの

$$\int w \, dz$$

where $w \in \operatorname{acl}(\mathbb{C}(z)).$
i.e.

where ω is a meromorphic differential form on a Riemann surface C.

ω

$$\int \frac{dz}{\sqrt{z^3 + az + b}} = \int \frac{dz}{w}$$

on $E := \{w^2 = z^3 + az + b\}.$

where
$$w \in \operatorname{acl}(\mathbb{C}(z))$$
.
i.e.

where ω is a meromorphic differential form on a Riemann surface *C*.

ω

dz

e.g.

$$\int \frac{dz}{\sqrt{z^3 + az + b}} = \int \frac{dz}{w}$$

on $E := \{w^2 = z^3 + az + b\}.$

<ロト < 回 > < 三 > < 三 > < 回 > < 三 > < 三 > < ○ < ○</p>

Multifunction $I_{\omega}: C(\mathbb{C})^2 \to \mathbb{C}$

$$I_{\omega}(P,Q) = \int_{P}^{Q} \omega,$$

value depends on path from *P* to *Q* on *C*. Status of $\mathbb{C}_{\int \omega} := <\mathbb{C}; +, \cdot, I_{\omega} >$? Example: $\omega = \frac{dz}{z}$ on $C = \mathbb{P}^1$

•
$$\int_1^b \frac{dz}{z} = \exp^{-1}(b) = \ln(b) + 2\pi i\mathbb{Z}$$

► $\int_{a}^{b} \frac{dz}{z} = \exp^{-1}(b) - \exp^{-1}(a) = \ln(b) - \ln(a) + 2\pi i \mathbb{Z}$

- ▶ So $\mathbb{C}_{\int \omega}$ interdefinable with $\mathbb{C}_{exp} = <\mathbb{C}; +, \cdot, exp >$.
- > Zilber: conjectural categorical description of \mathbb{C}_{exp} .
- ▶ Involves transcendence conjectures e.g. $e^e \in \mathbb{Q}$?

Multifunction $I_{\omega}: C(\mathbb{C})^2 \to \mathbb{C}$

$$I_{\omega}(P,Q) = \int_{P}^{Q} \omega,$$

value depends on path from P to Q on C. Status of $\mathbb{C}_{\int \omega} := <\mathbb{C}; +, \cdot, I_{\omega} >$? Example: $\omega = \frac{dz}{z}$ on $C = \mathbb{P}^1$

•
$$\int_1^b \frac{dz}{z} = \exp^{-1}(b) = \ln(b) + 2\pi i\mathbb{Z}$$

► $\int_{a}^{b} \frac{dz}{z} = \exp^{-1}(b) - \exp^{-1}(a) = \ln(b) - \ln(a) + 2\pi i \mathbb{Z}$

- ▶ So $\mathbb{C}_{\int \omega}$ interdefinable with $\mathbb{C}_{exp} = <\mathbb{C}; +, \cdot, exp >$.
- > Zilber: conjectural categorical description of \mathbb{C}_{exp} .
- ▶ Involves transcendence conjectures e.g. $e^e \in \mathbb{Q}$?

Multifunction $I_{\omega}: C(\mathbb{C})^2 \to \mathbb{C}$

$$I_{\omega}(P,Q) = \int_{P}^{Q} \omega,$$

value depends on path from *P* to *Q* on *C*. Status of $\mathbb{C}_{\int \omega} := <\mathbb{C}; +, \cdot, I_{\omega} >$? Example: $\omega = \frac{dz}{2}$ on $C = \mathbb{P}^1$

•
$$\int_1^b \frac{dz}{z} = \exp^{-1}(b) = \ln(b) + 2\pi i\mathbb{Z}$$

• $\int_{a}^{b} \frac{dz}{z} = \exp^{-1}(b) - \exp^{-1}(a) = \ln(b) - \ln(a) + 2\pi i\mathbb{Z}$

- ▶ So $\mathbb{C}_{\int \omega}$ interdefinable with $\mathbb{C}_{exp} = < \mathbb{C}; +, \cdot, exp > .$
- Zilber: conjectural categorical description of C_{exp}.
- ► Involves transcendence conjectures e.g. e^e ∈ Q?

Abelian integrals of the first kind

Suppose $\omega \in \Omega$:= space of *holomorphic* differential forms on a Riemann surface *C*. Say $\omega = \omega_1, \ldots, \omega_g$ basis for Ω , where g = genus(C). Fix $P_0 \in C(\mathbb{C})$.

Fact (Abel, Jacobi)

C embeds in its Jacobian $J = Pic^{0}(C)$ such that

$$\left(\int_{P_0}^Q \omega_1,\ldots,\int_{P_0}^Q \omega_g\right)=\pi^{-1}(Q)$$

where $\pi : \mathbb{C}^g \twoheadrightarrow J(\mathbb{C})$ is a homomorphism with kernel a lattice (the periods).

Status of $< \mathbb{C}; +, \cdot, \pi >$?

Abelian integrals of the first kind

Suppose $\omega \in \Omega$:= space of *holomorphic* differential forms on a Riemann surface *C*. Say $\omega = \omega_1, \ldots, \omega_g$ basis for Ω , where g = genus(C). Fix $P_0 \in C(\mathbb{C})$.

Fact (Abel, Jacobi)

C embeds in its Jacobian $J = Pic^{0}(C)$ such that

$$\left(\int_{P_0}^{Q}\omega_1,\ldots,\int_{P_0}^{Q}\omega_g\right)=\pi^{-1}(Q)$$

where $\pi : \mathbb{C}^g \twoheadrightarrow J(\mathbb{C})$ is a homomorphism with kernel a lattice (the periods).

Status of $< \mathbb{C}; +, \cdot, \pi >$?

Abelian integrals of the first kind

Suppose $\omega \in \Omega$:= space of *holomorphic* differential forms on a Riemann surface *C*. Say $\omega = \omega_1, \ldots, \omega_g$ basis for Ω , where g = genus(C). Fix $P_0 \in C(\mathbb{C})$.

Fact (Abel, Jacobi)

C embeds in its Jacobian $J = Pic^{0}(C)$ such that

$$\left(\int_{P_0}^{Q}\omega_1,\ldots,\int_{P_0}^{Q}\omega_g\right)=\pi^{-1}(Q)$$

where $\pi : \mathbb{C}^g \twoheadrightarrow J(\mathbb{C})$ is a homomorphism with kernel a lattice (the periods).

Status of $< \mathbb{C}; +, \cdot, \pi >$?

Linear reduct

Let $\mathcal{O} := \{\eta \in \operatorname{Mat}_g(\mathbb{C}) \mid \eta(\operatorname{ker}(\pi)) \leq \operatorname{ker}(\pi)\} \cong \operatorname{End}(J)$. Let $\mathcal{O}^0 := \mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{O}$. Consider \mathbb{C}^g as a new sort with just the \mathcal{O}^0 -module structure:

$$\mathsf{Cov}(J) := \left\langle \begin{array}{c} \left\langle \mathbb{C}^{g}; +, (\eta)_{\eta \in \mathcal{O}^{0}} \right\rangle \\ \pi : \mathbb{C}^{g} \to J(\mathbb{C}) \\ \left\langle \mathbb{C}; +, \cdot \right\rangle \end{array} \right\rangle$$

Lemma

 $T_J := \text{Th}(\text{Cov}(J))$ has quantifier elimination and axiomatisation:

 $\begin{array}{l} \left\langle \mathbb{C}^{g}+,(\eta)_{\eta\in\mathcal{O}^{0}}\right\rangle \text{ is a }\mathcal{O}^{0}\text{ -module};\\ \pi \text{ is a surjective }\mathcal{O}\text{ -homomorphism};\\ \left\langle \mathbb{C};+,\cdot\right\rangle\models\mathsf{ACF}_{0}. \end{array}$

Linear reduct

Let $\mathcal{O} := \{\eta \in \operatorname{Mat}_g(\mathbb{C}) \mid \eta(\operatorname{ker}(\pi)) \leq \operatorname{ker}(\pi)\} \cong \operatorname{End}(J)$. Let $\mathcal{O}^0 := \mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{O}$. Consider \mathbb{C}^g as a new sort with just the \mathcal{O}^0 -module structure:

$$\mathsf{Cov}(J) := \left\langle \begin{array}{c} \left\langle \mathbb{C}^{g}; +, (\eta)_{\eta \in \mathcal{O}^{0}} \right\rangle \\ \pi : \mathbb{C}^{g} \to J(\mathbb{C}) \\ \langle \mathbb{C}; +, \cdot \rangle \end{array} \right\rangle$$

Lemma

 $T_J := \text{Th}(\text{Cov}(J))$ has quantifier elimination and axiomatisation:

 $\begin{array}{l} \left\langle \mathbb{C}^{g}+,(\eta)_{\eta\in\mathcal{O}^{0}}\right\rangle \text{ is a }\mathcal{O}^{0}\text{ -module};\\ \pi \text{ is a surjective }\mathcal{O}\text{ -homomorphism};\\ \left\langle \mathbb{C};+,\cdot\right\rangle\models\mathsf{ACF}_{0}. \end{array}$

Linear reduct

Let $\mathcal{O} := \{\eta \in \operatorname{Mat}_g(\mathbb{C}) \mid \eta(\operatorname{ker}(\pi)) \leq \operatorname{ker}(\pi)\} \cong \operatorname{End}(J)$. Let $\mathcal{O}^0 := \mathbb{Q} \otimes_{\mathbb{Z}} \mathcal{O}$. Consider \mathbb{C}^g as a new sort with just the \mathcal{O}^0 -module structure:

$$\mathsf{Cov}(J) := \left\langle \begin{array}{c} \left\langle \mathbb{C}^{g}; +, (\eta)_{\eta \in \mathcal{O}^{0}} \right\rangle \\ \pi : \mathbb{C}^{g} \to J(\mathbb{C}) \\ \langle \mathbb{C}; +, \cdot \rangle \end{array} \right\rangle$$

Lemma

 $T_J := \text{Th}(\text{Cov}(J))$ has quantifier elimination and axiomatisation:

 $\begin{array}{l} \left\langle \mathbb{C}^{g}+,(\eta)_{\eta\in\mathcal{O}^{0}}\right\rangle \text{ is a }\mathcal{O}^{0}\text{ -module};\\ \pi \text{ is a surjective }\mathcal{O}\text{ -homomorphism};\\ \left\langle \mathbb{C};+,\cdot\right\rangle\models\mathsf{ACF}_{0}. \end{array}$

Categoricity

Theorem (Categoricity over ker(π))

Suppose J is defined over a number field. Then Cov(J) is specified up to isomorphism by:

its first order theory T_J ;

its cardinality;

the isomorphism type of ker(π).

- > Zilber: analogous statement for \mathbb{G}_m .
- Gavrilovich: similar statement, but assuming $2^{\aleph_0} = \aleph_1$.

Categoricity

Theorem (Categoricity over ker(π))

Suppose J is defined over a number field. Then Cov(J) is specified up to isomorphism by:

its first order theory T_J ; its cardinality; the isomorphism type of ker(π).

- ► Zilber: analogous statement for G_m.
- Gavrilovich: similar statement, but assuming $2^{\aleph_0} = \aleph_1$.

Atomicity

$B \subseteq \mathbb{C}$ finite algebraically independent

$$\mathcal{M}_{B} := \pi^{-1}(J(\operatorname{acl}(B))) \preceq \operatorname{Cov}(J).$$

Lemma (Atomicity)

 \mathcal{M}_B is atomic, hence unique, over $\bigcup_{B' \subset B} \mathcal{M}_{B'}$.

Categoricity theorem follows: Cov(J) is built uniquely over a transcendence basis of \mathbb{C} .

Atomicity

 $B \subseteq \mathbb{C}$ finite algebraically independent

$$\mathcal{M}_{B} := \pi^{-1}(J(\operatorname{acl}(B))) \preceq \operatorname{Cov}(J).$$

Lemma (Atomicity)

 \mathcal{M}_B is atomic, hence unique, over $\bigcup_{B' \subset B} \mathcal{M}_{B'}$.

Categoricity theorem follows: Cov(J) is built uniquely over a transcendence basis of \mathbb{C} .

Equivalent by QE:

Lemma (Atomicity)

- $\overline{a} \in J(\operatorname{acl}(B));$
- ► *a_i* in simple subgroups, no *O*-linear relations;

•
$$k_{\partial} := \bigcup_{B' \subseteq B} \operatorname{acl}(B');$$

Then exist only finitely many types

 $\operatorname{tp}^{\operatorname{ACF}}((\overline{a}_n)_n/k_\partial).$

コントロット 山田 マイビット 山 うくら

Lemma (Atomicity)

► $k_{\partial} := \bigcup_{B' \subseteq B} \operatorname{acl}(B');$

Then exist only finitely many types tp^{ACF}($(\overline{a}_n)_n/k_\partial$).

Proof.

• $k := k_{\partial}(\overline{a})$

Step I ("Mordell-Weil"): Bound *n* such that $\overline{a}_n \in J(k)$;

Lemma (Atomicity) Exist only finitely many types $tp^{ACF}((\overline{a}_n)_n/k_{\partial})$.

Proof.

k := k∂(ā)
Step I ("Mordell-Weil"): Bound *n* such that ā_n ∈ J(k);
Step II ("Kummer"): More generally, bound *k*-rational imaginaries ā_n + Z_n for subgroups Z_n ≤ Tor_n(J) - i.e. bound index [Tor_n(J) : Z_n].

Lemma (Atomicity)

Exist only finitely many types tp^{ACF}($(\overline{a}_n)_n/k_\partial$).

Proof.

• $k := k_{\partial}(\overline{a})$

Step I ("Mordell-Weil"): Bound *n* such that $\overline{a}_n \in J(k)$;

Step II ("Kummer"): More generally, bound *k*-rational imaginaries $\overline{a}_n + Z_n$ for subgroups $Z_n \leq \text{Tor}_n(J)$ - i.e. bound index [Tor_n(J) : Z_n].

Step IIa Find number field k_0 such that J and all Z_n may be taken over k_0 ;

Step IIb By Faltings, the isogenous quotients J_{Z_n} fall into finitely many isomorphism classes; hence reduce to bounding rational points in *J* as in Step I.

Lemma (Atomicity)

Exist only finitely many types tp^{ACF}($(\overline{a}_n)_n/k_\partial$).

Proof.

► $k := k_{\partial}(\overline{a})$

Step I ("Mordell-Weil"): Bound *n* such that $\overline{a}_n \in J(k)$;

- Step II ("Kummer"): More generally, bound *k*-rational imaginaries $\overline{a}_n + Z_n$ for subgroups $Z_n \leq \text{Tor}_n(J)$ i.e. bound index [Tor_n(J) : Z_n].
 - Step IIa Find number field k_0 such that J and all Z_n may be taken over k_0 ;
 - Step IIb By Faltings, the isogenous quotients J/Z_n fall into finitely many isomorphism classes; hence reduce to bounding rational points in *J* as in Step I.

Lemma (Atomicity)

Exist only finitely many types tp^{ACF}($(\overline{a}_n)_n/k_\partial$).

Proof.

• $k := k_{\partial}(\overline{a})$

- Step I ("Mordell-Weil"): Bound *n* such that $\overline{a}_n \in J(k)$; and moreover such that $\eta \overline{a}_n \in J(k)$ for $\eta \in \mathcal{O}$.
- Step II ("Kummer"): More generally, bound *k*-rational imaginaries $\overline{a}_n + Z_n$ for subgroups $Z_n \leq \text{Tor}_n(J)$ i.e. bound index [Tor_n(J) : Z_n].
 - Step IIa Find number field k_0 such that J and all Z_n may be taken over k_0 ;
 - Step IIb By Faltings, the isogenous quotients J/Z_n fall into finitely many isomorphism classes; hence reduce to bounding rational points in *J* as in Step I.

Proof.

Step I ("Mordell-Weil"): Bound *n* such that $\overline{a}_n \in J(k)$; and moreover such that $\eta \overline{a}_n \in J(k)$ for $\eta \in \mathcal{O}$. Step la Inductively specialise to "lower-dimensional simplices" Step IIa Appeal to Lang-Néron's function-field Mordell-Weil, or to B-Gavrilovich-Hils. Step II ("Kummer"): More generally, bound k-rational imaginaries $\overline{a}_n + Z_n$ for subgroups $Z_n \leq \text{Tor}_n(J)$ - i.e. bound index [Tor_n(J) : Z_n]. Step IIa Find number field k_0 such that J and all Z_n may be taken over k_0 : Step IIb By Faltings, the isogenous quotients J_{Z_a} fall into finitely many isomorphism classes; hence reduce to bounding rational points in J as in Step I.

Proof.

Step I ("Mordell-Weil"): Bound *n* such that $\overline{a}_n \in J(k)$; and moreover such that $\eta \overline{a}_n \in J(k)$ for $\eta \in \mathcal{O}$. Step la Inductively specialise to "lower-dimensional simplices" Step IIa Appeal to Lang-Néron's function-field Mordell-Weil, or to B-Gavrilovich-Hils. Step II ("Kummer"): More generally, bound k-rational imaginaries $\overline{a}_n + Z_n$ for subgroups $Z_n \leq \text{Tor}_n(J)$ - i.e. bound index [Tor_n(J) : Z_n]. Step IIa Find number field k_0 such that J and all Z_n may be taken over k_0 : Step IIb By Faltings, the isogenous quotients J_{Z_a} fall into finitely many isomorphism classes; hence reduce to bounding rational points in J as in Step I.

Questions

- Can we relax the assumption that J is over a number field?
- Can we handle semiabelian varieties, and arbitrary abelian integrals?
- Intermediate reducts status of
 - ► Complex field + $Q \mapsto \int_{P_0}^{Q} \omega$ for a single ω as a map to a group?
 - Complex field + set Ω + pairing $\int_{P_{\Omega}}^{\cdot} \cdot : C(\mathbb{C}) \times \Omega \rightarrow <\mathbb{C}; + >?$
 - ► Algebra structure on the integrals e.g. two-field exponentiation < C; +, · >→ ^{exp} < C; +, · >? (trd(*log2*, *log3*) = 2?)
 - Graded version?

Questions

- Can we relax the assumption that J is over a number field?
- Can we handle semiabelian varieties, and arbitrary abelian integrals?
- Intermediate reducts status of
 - ► Complex field + $Q \mapsto \int_{P_0}^{Q} \omega$ for a single ω as a map to a group?
 - Complex field + set Ω + pairing $\int_{P_0}^{\cdot} \cdot : C(\mathbb{C}) \times \Omega \rightarrow <\mathbb{C}; + >?$
 - Algebra structure on the integrals e.g. two-field exponentiation < ℂ; +, · >→^{exp} < ℂ; +, · >? (trd(*log2*, *log3*) = 2?)
 - Graded version?