Weak Truth Table Degrees of Structures

David Belanger

1 April 2012 at UW–Madison

EMAIL: dbelanger@math.cornell.edu Department of Mathematics Cornell University

Preliminaries

David Belanger wtt Degrees of Structures

æ

Э

▲ 母 ▶ ▲ 臣

Recall:

Definition

- A set X ⊆ N is Turing reducible to a second set Y ⊆ N if there is an algorithm that can use Y to decide membership in X.
- One Turing degree deg_T(X) of a set X is the class of all subsets of N that are mutually Turing reducible with X.
- A set X is weak truth table reducible to a second set Y if there is an algorithm that can use a computably-bounded piece of Y to decide membership in X.
- The weak truth table degree deg_{wtt}(X) of a set X is defined in the analogous way.

Definition

A structure is a first-order structure, with universe N, on a finite or countable alphabet (R₀, R₁, R₂,...) of relations. The arities of R_k are computable as a function of k. We identify a structure A with its atomic diagram

$$D(\mathcal{A}) = \{ \langle k, a_1, a_2, \ldots, a_n \rangle : \mathcal{A} \models R_k(a_1, \ldots, a_n) \}.$$

Note that this is a subset of \mathbb{N} .

- The Turing degree of \mathcal{A} , written deg_T(\mathcal{A}), is the Turing degree of $D(\mathcal{A})$.
- **(a)** The wtt degree of \mathcal{A} is defined similarly.

We defined deg_T(\mathcal{A}) as the Turing degree of the atomic diagram of \mathcal{A} . Typically, there is a second structure \mathcal{B} , isomorphic to \mathcal{A} , such that deg_T(\mathcal{B}) \neq deg_T(\mathcal{A}).

Definition

The Turing degree spectrum of A is the family of all Turing degrees of isomorphic copies of A.

$$\operatorname{spec}_{\mathcal{T}}(\mathcal{A}) = \{ \deg_{\mathcal{T}}(\mathcal{B}) : \mathcal{B} \cong \mathcal{A} \}.$$

2 The wtt degree spectrum of \mathcal{A} is

$$\operatorname{spec}_{wtt}(\mathcal{A}) = \{ \operatorname{deg}_{wtt}(\mathcal{B}) : \mathcal{B} \cong \mathcal{A} \}.$$

Theorem (Knight 86)

If spec_T(A) is contained in a countable union $\bigcup_n C_n$ of upward cones, then spec_T(A) is contained in a particular C_{n_0} .

Theorem (Hirschfeldt–Khoussainov–Shore–Slinko 02)

If \mathcal{A} is a nontrivial structure, then there exists a graph \mathcal{G} with universe \mathbb{N} such that spec_T(\mathcal{G}) = spec_T(\mathcal{A}).

Theorem (Knight 86)

- spec_T(A) is a singleton if and only if A is trivial.
- Spec_T(A) is upward closed in the Turing degrees if and only if A is not trivial.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Knight 86)

If spec_T(\mathcal{A}) is contained in a countable union $\bigcup_n C_n$ of upward cones, then spec_T(\mathcal{A}) is contained in a particular C_{n_0} .

Theorem (Hirschfeldt–Khoussainov–Shore–Slinko 02)

If \mathcal{A} is a nontrivial structure, then there exists a graph \mathcal{G} with universe \mathbb{N} such that spec_T(\mathcal{G}) = spec_T(\mathcal{A}).

Theorem (Knight 86)

- spec_T(A) is a singleton if and only if A is trivial.
- Spec_T(A) is upward closed in the Turing degrees if and only if A is not trivial.

A structure \mathcal{A} with universe \mathbb{N} is trivial if there exists a finite subset $S \subset \mathbb{N}$ such that any permutation of \mathbb{N} fixing S pointwise is an automorphism of \mathcal{A} .

1. What can be said about $spec_{wtt}(A)$ as a family of wtt degrees?

- **→** → **→**

э

- 1. What can be said about $spec_{wtt}(A)$ as a family of wtt degrees?
- II. What classes of reals can be written as $\bigcup(\operatorname{spec}_{wtt}(\mathcal{A}))$ for a structure \mathcal{A} ?

▶ ∢ ≣ ▶

- 1. What can be said about $spec_{wtt}(A)$ as a family of wtt degrees?
- II. What classes of reals can be written as $\bigcup(\operatorname{spec}_{wtt}(\mathcal{A}))$ for a structure \mathcal{A} ?
- III. Just how is a wtt degree spectrum different from a Turing degree spectrum?

Furthermore, what happens when we narrow the class of structures ${\cal A}$ that are allowed?

When we classify the possible Turing degree spectra, the following dichotomy is a good start.

Theorem (Knight 86)

- spec_T(A) is a singleton if and only if A is trivial.
- spec_T(A) is upward closed in the Turing degrees if and only if A is not trivial.

When we classify the possible Turing degree spectra, the following dichotomy is a good start.

Theorem (Knight 86)

- spec_T(A) is a singleton if and only if A is trivial.
- spec_T(A) is upward closed in the Turing degrees if and only if A is not trivial.

Theorem

• spec_{wtt}(A) is a singleton if and only if A is trivial.

When we classify the possible Turing degree spectra, the following dichotomy is a good start.

Theorem (Knight 86)

- spec_T(A) is a singleton if and only if A is trivial.
- spec_T(A) is upward closed in the Turing degrees if and only if A is not trivial.

Theorem

- spec_{wtt}(A) is a singleton if and only if A is trivial.
- Spec_{wtt}(A) avoids an upward cone if and only if A is w-trivial.
- Spec_{wtt}(A) contains an upward cone if and only if A is not w-trivial.

As subsets of $2^{\mathbb{N}}$, it is easy to see that the inequality $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) \subseteq \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{A})$

holds.

As subsets of $2^{\mathbb{N}}$, it is easy to see that the inequality

$$\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) \subseteq \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{A})$$

holds. There are plenty of examples where the two sets are equal:

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B})$. In fact, \mathcal{A} can be a graph.

We'd like to be sure that this is not always the case.

As subsets of $2^{\mathbb{N}}$, it is easy to see that the inequality

$$\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) \subseteq \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{A})$$

holds. There are plenty of examples where the two sets are equal:

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B})$. In fact, \mathcal{A} can be a graph.

We'd like to be sure that this is not always the case.

Proposition

- If A is trivial, and its Turing degree consists of more than one wtt degree, then the inclusion is strict.
- **②** For any wtt degree **b**, we can construct a B, with infinite signature, such that spec_{wtt}(B) = D_{wtt}(≥ **b**).

As subsets of $2^{\mathbb{N}}$, it is easy to see that the inequality

$$\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) \subseteq \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{A})$$

holds. There are plenty of examples where the two sets are equal:

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B})$. In fact, \mathcal{A} can be a graph.

We'd like to be sure that this is not always the case.

Proposition

- If A is trivial, and its Turing degree consists of more than one wtt degree, then the inclusion is strict.
- **②** For any wtt degree **b**, we can construct a B, with infinite signature, such that spec_{wtt}(B) = D_{wtt}(≥ **b**).
- There exists a nontrivial structure C with finite signature where the inclusion is strict.

Theorem (H–K–S–S 2002)

If \mathcal{B} is a nontrivial structure, then there exists a graph \mathcal{G} such that $\operatorname{spec}_{\mathcal{T}}(\mathcal{G}) = \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We say that graphs are universal for Turing degree spectra.

Theorem (H–K–S–S 2002)

If \mathcal{B} is a nontrivial structure, then there exists a graph \mathcal{G} such that $\operatorname{spec}_{\mathcal{T}}(\mathcal{G}) = \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We say that graphs are universal for Turing degree spectra.

Fact

If A is a structure with finite signature and A is w-trivial, then A is trivial. In particular, graphs are not similarly universal for wtt degree spectra.

Theorem (H–K–S–S 2002)

If \mathcal{B} is a nontrivial structure, then there exists a graph \mathcal{G} such that $\operatorname{spec}_{\mathcal{T}}(\mathcal{G}) = \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We say that graphs are universal for Turing degree spectra.

Fact

If A is a structure with finite signature and A is w-trivial, then A is trivial. In particular, graphs are not similarly universal for wtt degree spectra.

Question

Is there an interesting class of structures (for example, graphs) that is universal for wtt degree spectra for models of finite signature?

When is $spec_{wtt}(A)$ upward closed?

Recall:

Theorem (Knight 86)

spec_T(A) is upward closed if and only if A is not trivial.

It is fairly easy to show that the wtt degree spectrum is upward closed for 'nice' types of structure.

- Nontrivial equivalence relations
- Ontrivial graphs with infinitely many components
- Groups, and so on

When is $spec_{wtt}(A)$ upward closed?

Recall:

Theorem (Knight 86)

spec_T(A) is upward closed if and only if A is not trivial.

It is fairly easy to show that the wtt degree spectrum is upward closed for 'nice' types of structure.

- Nontrivial equivalence relations
- Ontrivial graphs with infinitely many components
- Groups, and so on
- This may call for a precise, novel definition of 'nice':
 - In Nontrivial graphs?

When is $spec_{wtt}(A)$ upward closed?

Recall:

Theorem (Knight 86)

spec_T(A) is upward closed if and only if A is not trivial.

It is fairly easy to show that the wtt degree spectrum is upward closed for 'nice' types of structure.

- Nontrivial equivalence relations
- Ontrivial graphs with infinitely many components
- Groups, and so on
- This may call for a precise, novel definition of 'nice':
 - In Nontrivial graphs?

Question

If $spec_{wtt}(A)$ contains a cone (i.e., if it is not w-trivial), must it be upward closed?

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph.

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph. It suffices to build an \mathcal{A} satisfying:

• spec_T(
$$\mathcal{A}$$
) = spec_T(\mathcal{B}).

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph. It suffices to build an \mathcal{A} satisfying:

• spec_T(
$$\mathcal{A}$$
) = spec_T(\mathcal{B}).

2 spec_{*wtt*}(\mathcal{A}) is upward closed.

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph. It suffices to build an \mathcal{A} satisfying:

- spec_T(\mathcal{A}) = spec_T(\mathcal{B}).
- **2** spec_{*wtt*}(\mathcal{A}) is upward closed.
- If X is Turing-above a copy of A, then X is wtt-above a copy of A.

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph. It suffices to build an \mathcal{A} satisfying:

- spec_T(\mathcal{A}) = spec_T(\mathcal{B}).
- **2** spec_{*wtt*}(A) is upward closed.
- If X is Turing-above a copy of A, then X is wtt-above a copy of A.

$$\overset{\mathcal{B}}{\overset{}}$$

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph. It suffices to build an \mathcal{A} satisfying:

- spec_T(\mathcal{A}) = spec_T(\mathcal{B}).
- **2** spec_{*wtt*}(\mathcal{A}) is upward closed.
- If X is Turing-above a copy of A, then X is wtt-above a copy of A.

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph. It suffices to build an \mathcal{A} satisfying:

- spec_T(\mathcal{A}) = spec_T(\mathcal{B}).
- **2** spec_{*wtt*}(\mathcal{A}) is upward closed.
- If X is Turing-above a copy of A, then X is wtt-above a copy of A.

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph. It suffices to build an \mathcal{A} satisfying:

- spec_T(\mathcal{A}) = spec_T(\mathcal{B}).
- **2** spec_{*wtt*}(\mathcal{A}) is upward closed.
- If X is Turing-above a copy of A, then X is wtt-above a copy of A.

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph. It suffices to build an \mathcal{A} satisfying:

- spec_T(\mathcal{A}) = spec_T(\mathcal{B}).
- **2** spec_{*wtt*}(\mathcal{A}) is upward closed.
- If X is Turing-above a copy of A, then X is wtt-above a copy of A.

Proposition

For any nontrivial \mathcal{B} , there is an \mathcal{A} such that $\bigcup \operatorname{spec}_{wtt}(\mathcal{A}) = \bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{B}).$

We may assume that \mathcal{B} is a graph. It suffices to build an \mathcal{A} satisfying:

- spec_T(\mathcal{A}) = spec_T(\mathcal{B}).
- **2** spec_{*wtt*}(\mathcal{A}) is upward closed.
- If X is Turing-above a copy of A, then X is wtt-above a copy of A.

If $spec_{wtt}(A)$ contains a cone, must it be upward closed? ... Or is there some other nice dichotomy to be found?

Question

Is there an interesting class Δ of structures such that, for each A with finite signature, there is a $\mathcal{B} \in \Delta$ with the same wtt degree spectrum?

 \ldots for each \mathcal{A} with a single binary relation symbol \ldots ?

Question

Can we characterize the structures \mathcal{A} such that $\bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{A}) = \bigcup \operatorname{spec}_{wtt}(\mathcal{A})$?

If $spec_{wtt}(A)$ contains a cone, must it be upward closed? ... Or is there some other nice dichotomy to be found?

Question

Is there an interesting class Δ of structures such that, for each A with finite signature, there is a $\mathcal{B} \in \Delta$ with the same wtt degree spectrum?

 \ldots for each \mathcal{A} with a single binary relation symbol \ldots ?

Question

Can we characterize the structures \mathcal{A} such that $\bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{A}) = \bigcup \operatorname{spec}_{wtt}(\mathcal{A})$?

If $spec_{wtt}(A)$ contains a cone, must it be upward closed? ... Or is there some other nice dichotomy to be found?

Question

Is there an interesting class Δ of structures such that, for each A with finite signature, there is a $\mathcal{B} \in \Delta$ with the same wtt degree spectrum?

 \ldots for each \mathcal{A} with a single binary relation symbol \ldots ?

Question

Can we characterize the structures \mathcal{A} such that $\bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{A}) = \bigcup \operatorname{spec}_{wtt}(\mathcal{A})$?

If $spec_{wtt}(A)$ contains a cone, must it be upward closed? ... Or is there some other nice dichotomy to be found?

Question

Is there an interesting class Δ of structures such that, for each A with finite signature, there is a $\mathcal{B} \in \Delta$ with the same wtt degree spectrum?

 \ldots for each \mathcal{A} with a single binary relation symbol \ldots ?

Question

Can we characterize the structures \mathcal{A} such that $\bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{A}) = \bigcup \operatorname{spec}_{wtt}(\mathcal{A})$?

If $spec_{wtt}(A)$ contains a cone, must it be upward closed? ... Or is there some other nice dichotomy to be found?

Question

Is there an interesting class Δ of structures such that, for each A with finite signature, there is a $\mathcal{B} \in \Delta$ with the same wtt degree spectrum?

 \ldots for each \mathcal{A} with a single binary relation symbol \ldots ?

Question

Can we characterize the structures \mathcal{A} such that $\bigcup \operatorname{spec}_{\mathcal{T}}(\mathcal{A}) = \bigcup \operatorname{spec}_{wtt}(\mathcal{A})$?

Definition

A structure \mathcal{A} with universe A is trivial if there exists a finite subset $S \subset A$ such that any permutation of A fixing S pointwise is an automorphism of \mathcal{A} . In this case, we say that S witnesses the triviality of \mathcal{A} .

Definition

A structure \mathcal{A} with universe A and relations (R_0, R_1, \ldots) is w-trivial if, for each total computable function f, there is a finite set S witnessing the triviality of the reduct of \mathcal{A} to the language $(R_0, R_1, \ldots, R_{f(|S|)})$.