
An overview of
Structural Proof Theory and Computing

Dale Miller

INRIA-Saclay & LIX, École Polytechnique
Palaiseau, France

Madison, Wisconsin, 2 April 2012

Part of the
Special Session in Structural Proof Theory and Computing

2012 ASL annual meeting



Outline

Setting the stage

Overview of sequent calculus

Focused proof systems



This special session

Alexis Saurin, University of Paris 7
Proof search and the logic of interaction

David Baelde, ITU Copenhagen
A proof theoretical journey from programming to model checking
and theorem proving

Stefan Hetzl, Vienna University of Technology
Which proofs can be computed by cut-elimination?

Marco Gaboardi, University of Pennsylvania
Light Logics for Polynomial Time Computations



Some themes within proof theory

• Ordinal analysis of consistency proofs (Gentzen, Schütte,
Pohlers, etc)

• Reverse mathematics (Friedman, Simpson, etc)

• Proof complexity (Cook, Buss, Kraj́ıček, Pudlák, etc)

• Structural Proof Theory (Gentzen, Girard, Prawitz, etc)
• Focus on the combinatorial and structural properties of proof.
• Proofs and their constituent are elements of computation



Many roles of logic in computation

Computation-as-model: Computations happens, i.e., states
change, communications occur, etc. Logic is used to make
statements about computation. E.g., Hoare triples, modal logics.

Computation-as-deduction: Elements of logic are used to model
elements of computation directly.

Proof normalization. Programs are proofs and computation is
proof normalization (λ-conversion, cut-elimination). A
foundations for functional programming. Curry-Howard
Isomorphism.

Proof search. Programs are theories and computation is the
search for sequent proofs. A foundations for logic programming,
model checking, and theorem proving.



Many roles of logic in computation

Computation-as-model: Computations happens, i.e., states
change, communications occur, etc. Logic is used to make
statements about computation. E.g., Hoare triples, modal logics.

Computation-as-deduction: Elements of logic are used to model
elements of computation directly.

Proof normalization. Programs are proofs and computation is
proof normalization (λ-conversion, cut-elimination). A
foundations for functional programming. Curry-Howard
Isomorphism.

Proof search. Programs are theories and computation is the
search for sequent proofs. A foundations for logic programming,
model checking, and theorem proving.



Computing as proof reduction
Example: Church numerals.

1 = λf λx .fx : (i → i)→ i → i

2 = λf λx .f (fx) : (i → i)→ i → i

+ = λnλmλf λx .(nf )((mf )x) :

((i → i)→ i → i)→ ((i → i)→ i → i)→ (i → i)→ i → i

Compute 2 + 2 using β-reduction: (λx .t)s −→ t[s/x ].

(λnλmλf λx .(nf )((mf )x))(λf λx .f (fx))(λhλu.h(hu))

(λmλf λx .((λf λx .f (fx))f )((mf )x))(λhλu.h(hu))

(λmλf λx .(λx .f (fx))((mf )x))(λhλu.h(hu))

(λf λx .(λx .f (fx))(((λhλu.h(hu))f )x))

(λf λx .(λx .f (fx))((λu.f (fu))x))

(λf λx .(λx .f (fx)))(f (fx))

(λf λx .f (f (f (fx))))



Proof normalization: functional programming

Types are (propositional) formulas and λ-terms are proofs.

Computation is repeatedly applying β-reductions

Typing generally guarantees termination. More expressive types
can guarantee more properties about computation.

A β-normal form is the value.



Proof search: logic programming

A logic program is a set of formulas Γ and a query G and
computation is the search for a cut-free proof of Γ − G .

During search, the collection of open sequents (those still requiring
a proof) change and that change captures a computation.



Comparing proof-normalization and proof-search

Functional Prog. Logic Prog.
Proofs are complete incomplete

Proofs may contain cuts are cut-free
Cut-elimination powers computation is about computation
Computation is determinate non-deterministic
Programs define functions relations

Many ideas from the proof theory have been applied to these two
computing paradigms, e.g.,
• higher-order quantification
• linear logic
• game semantics

The gap between these paradigms has remained robust.



Outline

Setting the stage

Overview of sequent calculus

Focused proof systems



Sequents

Sequents are pairs Γ − ∆ where

I Γ, the left-hand-side, is a multiset of formulas; and

I ∆, the right-hand-side, is a multiset of formulas.

NB: Gentzen used lists instead of multisets. (Sets are also another
possible alternative.)

The formulas in Γ are “hypotheses” and the formulas in ∆ are
“possible conclusions”.

There are three groups of inference rules: structural, identity, and
introduction.



Inference rules: two structural rules

There are two sets of these: contraction, weakening.

Γ,B,B − ∆

Γ,B − ∆
cL

Γ − ∆,B,B

Γ − ∆,B
cR

Γ − ∆

Γ,B − ∆
wL

Γ − ∆

Γ − ∆,B
wR

NB: Gentzen’s use of lists of formulas required him to also have an
exchange rule.



Inference rules: two identity rules

There are exactly two: initial, cut.

B − B
init

Γ1 − ∆1,B B, Γ2 − ∆2

Γ1, Γ2 − ∆1,∆2
cut

Notice the repeated use of the variable B in these rules.

In general: all instances of both of these rules can be eliminated
except for init when B is atomic.



Inference rules: introduction rules (some examples)

Γ,Bi − ∆

Γ,B1 ∧ B2 − ∆
∧L

Γ − ∆,B Γ − ∆,C

Γ − ∆,B ∧ C
∧R

Γ,B − ∆ Γ,C − ∆

Γ,B ∨ C − ∆
∨L

Γ − ∆,Bi

Γ − ∆,B1 ∨ B2
∨R

Γ1 − ∆1,B Γ2,C − ∆2

Γ1, Γ2,B ⊃ C − ∆1,∆2
⊃L

Γ,B − ∆,C

Γ − ∆,B ⊃ C
⊃R

Γ,B[t/x ] − ∆

Γ, ∀x B − ∆
∀L

Γ − ∆,B[y/x ]

Γ − ∆,∀x B
∀R

Γ,B[y/x ] − ∆

Γ,∃x B − ∆
∃L

Γ − ∆,B[t/x ]

Γ − ∆, ∃x B
∃R



Single-conclusion and multi-conclusion sequents

• An arbitrary proof involving sequents is a proof in classical logic.
• A proof in which all sequents contain at most one formula on

the right is an intuitionistic proof.
Equivalently: an intuitionistic (cut-free) proof
• has no contractions on the right and
• the implication left rule must be restricted as follows:

Γ1 − B Γ2,C − D

Γ1, Γ2,B ⊃ C − D
⊃L

The first restriction cannot be stated using natural deduction.

Compare this characterization of classical vs intuitionistic logic with
• the presence or absence of the excluded middle,
• the use of Kripke semantics,
• references to construction reasoning, etc.



Outline

Setting the stage

Overview of sequent calculus

Focused proof systems



A chemistry for inference

Girard’s linear logic (1987) strengthen our understanding of
structural and introduction rules.

The sequent calculi of Gentzen and Girard provides the atoms of
inference.

The computer scientist wishing to use inference generally finds
these atoms to be far too tiny and unstructured.

Recent work in structural proof theory has been developing a
chemistry for inference so that we can engineer a rich set of
tailor-made molecules of inference.



Classical logic and one-sided sequents

Two conventions for dealing with classical logic.

• Formulas are in negation normal form.

I B ⊃ C is replaced with ¬B ∨ C ,

I negations are pushed to the atoms

• Sequents will be one-sided. In particular, the two sided sequent

B1, . . . ,Bn − C1, . . . ,Cm

will be converted to

− ¬B1, . . . ,¬Bn,C1, . . . ,Cm.



LKF: Focusing for Classical Logic

The connectives are polarized: ∧−, ∧+, ∨−, ∨+, t−, t+, f −, f +.

A formula is positive if it is a top-level ∧+, ∨+, t+, f + or an atom.
A formula is negative if it is a top-level ∧−,∨−, t−, f − or a
negated atom.

LKF is a focused, one-sided sequent calculus with the sequents

` Θ ⇑ Γ and ` Θ ⇓ Γ

Here, Γ is a multiset of formulas and Θ is a multiset of positive
formulas and negated atoms.



LKF : focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,B ` Θ ⇑ Γ,C

` Θ ⇑ Γ,B ∧− C

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,B,C

` Θ ⇑ Γ,B ∨−C

` Θ ⇓ t+

` Θ ⇓ Γ1,B1 ` Θ ⇓ Γ2,B2

` Θ ⇓ Γ1, Γ2,B1 ∧+ B2

` Θ ⇓ Γ,Bi

` Θ ⇓ Γ,B1 ∨+ B2

Init

` ¬A,Θ ⇓ A

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N
` Θ ⇓ N

Decide

` P,Θ ⇓ P
` P,Θ ⇑ ·

P multiset of positives; N multiset of negatives;
A atomic; C positive formula or negated atom



LKF : focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,B ` Θ ⇑ Γ,C

` Θ ⇑ Γ,B ∧− C

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,B,C

` Θ ⇑ Γ,B ∨−C

` Θ ⇓ t+

` Θ ⇓ Γ1,B1 ` Θ ⇓ Γ2,B2

` Θ ⇓ Γ1, Γ2,B1 ∧+ B2

` Θ ⇓ Γ,Bi

` Θ ⇓ Γ,B1 ∨+ B2

Init

` ¬A,Θ ⇓ A

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N
` Θ ⇓ N

Decide

` P,Θ ⇓ P
` P,Θ ⇑ ·

P multiset of positives; N multiset of negatives;
A atomic; C positive formula or negated atom



LKF : focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,B ` Θ ⇑ Γ,C

` Θ ⇑ Γ,B ∧− C

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,B,C

` Θ ⇑ Γ,B ∨−C

` Θ ⇓ t+

` Θ ⇓ Γ1,B1 ` Θ ⇓ Γ2,B2

` Θ ⇓ Γ1, Γ2,B1 ∧+ B2

` Θ ⇓ Γ,Bi

` Θ ⇓ Γ,B1 ∨+ B2

Init

` ¬A,Θ ⇓ A

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N
` Θ ⇓ N

Decide

` P,Θ ⇓ P
` P,Θ ⇑ ·

P multiset of positives; N multiset of negatives;
A atomic; C positive formula or negated atom



Results about LKF

Let B be a first-order logic formula and let B̂ result from B by
placing + or − on t, f , ∧, and ∨ (there are exponentially many
such placements).

Theorem. B is a first-order theorem if and only if B̂ has an LKF
proof. [Liang & M, TCS 2009]

Thus the different polarizations do not change provability but can
radically change the proofs.

One can easy move from a linear-sized proof to an
exponentially-sized proof simply by changing the polarity of
connectives.



Immediate by inspection of LKF

The only form of contraction is in the Decide rule.

` P,Θ ⇓ P
` P,Θ ⇑ ·

Thus: only positive formulas are contracted.

The only occurrence of weakening is in the Init rule.

` ¬A,Θ ⇓ A

Thus formulas that are top-level ∧−,∨−, t−, f − are treated linearly
(in the sense of linear logic).



The abstraction behind focused proofs

If we ignore the internal structure of phases and consider only their
boundaries, we move from micro-rules (the atoms of inference) to
macro-rules (pos or neg phases, the molecules of inference).

` Θ1 ⇑ · · · · ` Θn ⇑ ·
` Θ ⇑ ·



An example

Let a, b, c be atoms and let Θ contain the formula a ∧+ b ∧+ ¬c .

` Θ ⇓ a Init ` Θ ⇓ b Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c Store

` Θ ⇓ ¬c Release

` Θ ⇓ a ∧+ b ∧+ ¬c
` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus,
the “macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·



Conclusion

The sequent calculus of Gentzen stressed the use of structural
rules in the specification of both intuitionistic and classical logics.

Girard’s linear logic refined our understanding of the interplay
between structural and introduction rules.

In general, the identity rules (initial and cut) can be eliminated.

For many applications of inference in computer science, these
atoms of inference need to be organized into larger rules.

Focus proofs systems (which also exist for linear and intuitionistic
logics) can be used to flexibly introduce such larger, molecular
inference rules.


	Setting the stage
	Overview of sequent calculus
	Focused proof systems

