A Random Turing degree

Adam Day

University of California, Berkeley

based on joint work with George Barmpalias and Andrew Lewis

31 March 2012

 290

メロト メタト メミトメ

- Consider the structure of the Turing degrees, D. Given $a \in \mathcal{D}$ we can ask what properties hold of a.
- Properties expressible in 1st order logic with \leq e.g. a is a minimal degree.
- Other properties e.g. a bounds a 1-generic degree.

 \cap \cap

K ロ ト K 伺 ト K ヨ ト

Fix some property P.

- Consider the set $S = \{X \subseteq \omega \mid P \text{ holds of } deg(X)\}.$
- S is a tailset (i.e. $σX ∈ S ⇒ X ∈ S$) hence by Kolmogorov's 0-1 law $\mu(S) = 0$ or $\mu(S) = 1$ provided that S is measureable.

Definition (attempt)

Call $a \in \mathcal{D}$ a random Turing degree if a is a member of all definable (without parameters) sets of Turing degrees of measure 1.

K ロ ⊁ K 倒 ≯ K 差 ≯ K

Question

Which properties of of Turing degrees are measurable? In particular, are all definable sets of Turing degrees measurable?

Lemma

The statement "All definable sets of Turing degrees are measurable" is independent of ZFC.

- ZFC + PD \Rightarrow All definable sets of Turing degrees are measurable.
- ZFC + $V=L \Rightarrow$ There exists a non-measurable definable set of Turing degrees.

メロト メ都 トメ ヨ トメ

Note properties, expressible in first order logic with \leq , restricted to a lower cone e.g. $\mathcal{D}(\mathbf{a}, \leq_T)$ are always measurable.

メロト メタト メミトメ

 299

Definition

 \bullet A set A is called X-random, if for every X-computable sequence of open sets $\{U_i\}_{i\in\omega}$, such that $\mu U_i \leq 2^{-i}$,

$$
A\not\in \bigcap_i U_i.
$$

- A set A is 1-random if it is ∅-random.
- A set A is 2-random if it is \emptyset' -random.

K ロ ▶ | K 御 ▶ | K 唐 ▶ |

Note properties, expressible in first order logic with \leq , restricted to a lower cone e.g. $\mathcal{D}(\mathbf{a}, \leq_{\mathcal{T}})$ are always measurable.

Kautz (1991) investigated if what level of algorithmic randomness is sufficient to ensure the above conditions. He showed every 2-random bounds a 1-generic and every 2-random is c.e.a.

 Ω

メロト メ都 トメ ヨ トメ ヨト

Theorem (Barmpalias-D-Lewis)

The 1-generic degrees are downwards dense below any 2-random degree.

Corollary

No 2-random degree bounds a minimal degree.

This result is optimal because there are Demuth random degrees and weakly 2-random degrees that bound minimal degrees.

K ロ ⊁ K 倒 ≯ K 差 ≯ K

Given a Turing functional Θ.

Build a Turing functional Φ such that:

$$
X 2
$$
-random

$$
\downarrow \Theta
$$

$$
\downarrow \Phi
$$

$$
Z 1
$$
-generic

Really build a family of functionals Φ_1, Φ_2, \ldots such that

$$
\mu\{X\colon \Phi_i(\Theta(X)) \text{ is total}\} \geq 1-2^{-i}.
$$

Hence if X is 2-random, some Φ_i is total with oracle $\Theta^\mathsf{X}.$

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K

Aspects of proof – Constructing Φ_1

Would like: for all Y, if Φ_1^Y is total then Φ_1^Y is 1-generic.

Ensuring Φ_1^Y meets or avoids W_1 the first c.e. set.

Find F so the that $\delta \leq \mu\{X: \Theta^X \succeq [F]\} \leq 1/4$.

Restrain definition of Φ_1 on elements of [F] unless some σ enters W_1 . If no string enters W_1 , then all elements in the complement of $[F]$ have meet this requirement.

K ロ ▶ (n 伊 ▶ (4 世 ▶

Aspects of proof – Constructing Φ_1 .

If some σ enters W_1 , then:

- Define $\Phi_1^X \succeq \sigma$ for all $X \in [F]$.
- \bullet Attempt to meet this requirement for some paths in the complement of $[F]$.

The functional Φ_1 is restrained on extensions of $[\hat{F}]$ until some compatible extension enters W_1 .

イロト イ母ト イヨト

Theorem (Greenberg-Montalbán)

If a is a degree such that the degrees containing 1-generic sets are downwards dense below a, then the theory of $\mathcal{D}(\mathbf{a}, \leq)$ interprets true first-order arithmetic.

Corollary

If a contains a 2-random set, then the theory of $\mathcal{D}(\mathbf{a}, \leq)$ interprets true first-order arithmetic.

メロト メタト メミトメ

A degree **a** is a strong minimal cover if there exists a degree $\mathbf{b} < \mathbf{a}$, such that for all $c < a$, $c < b$:

Theorem (Barmpalias-D-Lewis)

• No degree below a 2-random is a strong minimal cover.

Every degree below a 2-random has a strong minimal cover.

 Ω

K ロ ▶ (伊 ▶ (毛)

A degree **a** is the top of a diamond if there exist degrees \mathbf{b} , \mathbf{c} such that the following diagram holds:

Theorem (Barmpalias-D-Lewis)

Every non-zero degree below a 2-random is the top of a diamond.

 Ω

K ロ ⊁ K 倒 ≯ K 差 ≯ K

Question

How are the n-random sets distributed in the Turing degrees?

Question

For $n > 2$, is there an $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathcal{D}$ such that:

- $\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c}$.
- **2** a and **c** both contain *n*-random sets.
- \bullet **b** does not contain an *n*-random set.

Conditions for a Turing degree not to be 2-random are usually either upwards or downwards closed.

