The set-theory of Compact spaces and converging sequences and stuff

Alan Dow

Department of Mathematics¹ University of North Carolina Charlotte

April 1, 2012

¹and Statistics

I want to discuss some of the set-theory arising in the investigation of the extent to which converging sequences control topological behavior in compact spaces. I want to discuss some of the set-theory arising in the investigation of the extent to which converging sequences control topological behavior in compact spaces.

I will discuss historical background in order to motivate some of my own newish - new results. I'll try to present it to show them as natural questions and also end with a brief list of unsolved attractive problems. I want to discuss some of the set-theory arising in the investigation of the extent to which converging sequences control topological behavior in compact spaces.

I will discuss historical background in order to motivate some of my own newish - new results. I'll try to present it to show them as natural questions and also end with a brief list of unsolved attractive problems.

Converging sequences in this talk will come in two flavors

 ω +1 means converging sequence with limit ω_1 +1 means co-countably converging

G_{δ} -points, Frechet

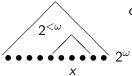
æ

< □ > < □ > < □ > < □ > < □ > < □ >

building up more complicated spaces

< ロ > < 同 > < 回 > < 回 >

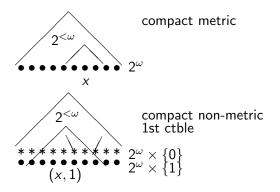
building up more complicated spaces



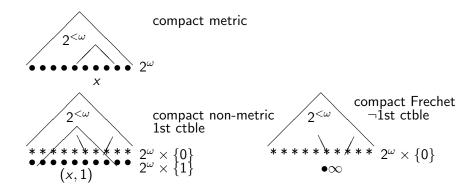
compact metric

∃ >

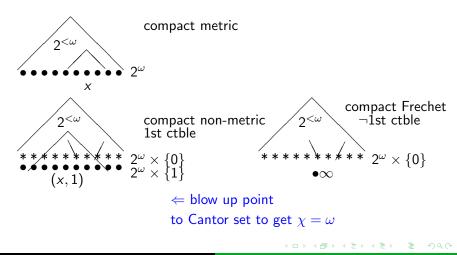
building up more complicated spaces



building up more complicated spaces



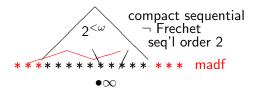
building up more complicated spaces



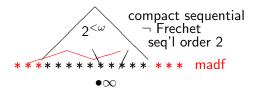
converging sequences but not Frechet

A B > A B >

converging sequences but not Frechet

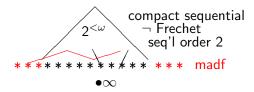


converging sequences but not Frechet



$\omega + 1 \not\subset \quad \beta \mathbb{N} \supset \omega_1 + 1$ -sequence

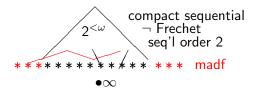
converging sequences but not Frechet



 $\begin{array}{ll} \exists b_1 \mathbb{N} & \not\supset \beta \omega \\ \text{completely} \\ \text{divergent } \mathbb{N} \\ b_1 \mathbb{N} \supset \omega + 1 \end{array}$

$\omega + 1 \not\subset \quad \beta \mathbb{N} \supset \omega_1 + 1$ -sequence

converging sequences but not Frechet

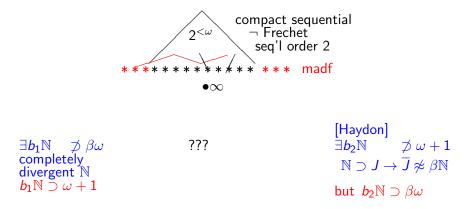


 $\begin{array}{ll} \exists b_1 \mathbb{N} & \not\supset \beta \omega \\ \text{completely} \\ \text{divergent } \mathbb{N} \\ b_1 \mathbb{N} \supset \omega + 1 \end{array}$

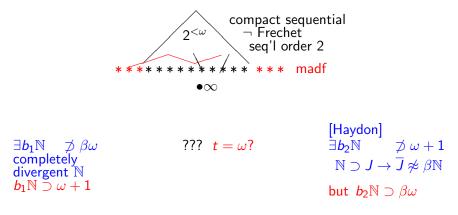
 $\begin{array}{l} [\mathsf{Haydon}] \\ \exists b_2 \mathbb{N} & \not\supset \omega + 1 \\ \mathbb{N} \supset J \rightarrow \overline{J} \not\approx \beta \mathbb{N} \end{array} \\ \text{but } b_2 \mathbb{N} \supset \beta \omega \end{array}$

 $\omega + 1 \not\subset \beta \mathbb{N} \supset \omega_1 + 1$ -sequence

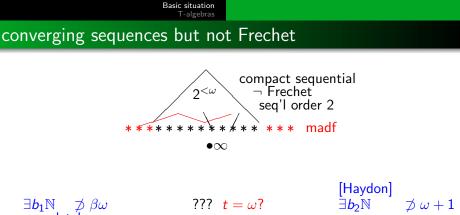
converging sequences but not Frechet



 $\omega + 1 \not\subset \beta \mathbb{N} \supset \omega_1 + 1$ -sequence



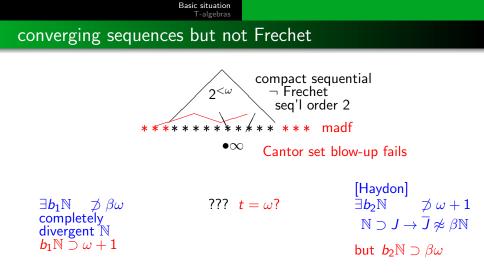
 $\omega + 1 \not\subset \quad \beta \mathbb{N} \supset \omega_1 + 1$ -sequence



 $\begin{array}{ll} \exists b_1 \mathbb{N} & \not\supset \beta \omega & \qquad ??? \quad t = \omega? & \qquad \exists b_2 \mathbb{N} & \not\supset \omega + 1 \\ \text{completely} & & \qquad \mathbb{N} \supset J \rightarrow \overline{J} \not\approx \beta \mathbb{N} \\ \text{divergent } \mathbb{N} & & \qquad b_1 \mathbb{N} \supset \omega + 1 & \qquad but \quad b_2 \mathbb{N} \supset \beta \omega \end{array}$

 $\omega+1
ot\subset \ eta\mathbb{N}\supset\omega_1{+}1 ext{-sequence}$

note: in $eta\omega_1$, ω_1 is completely divergent, but $eta\omega_1 \supset (\omega_1{+}1)$



 $\omega + 1 \not\subset \quad \beta \mathbb{N} \supset \omega_1 + 1$ -sequence

note: in $\beta \omega_1$, ω_1 is completely divergent, but $\beta \omega_1 \supset (\omega_1+1)$

countable tightness, ie. $t = \omega$

Alan Dow the set-theory of compact spaces

< ロ > < 同 > < 回 > < 回 >

э

countable tightness, ie. $t = \omega$

Fact

a space is sequential if A
 = U_{α∈ω1} A^(α) − iteratively add limits of converging sequences

countable tightness, ie. $t = \omega$

Fact

a space is sequential if A
 = ∪_{α∈ω1} A^(α) − iteratively add limits of converging sequences

• a space is
$$t=\omega$$
 if $\overline{A}=igcup\{\overline{B}:B\in [A]^\omega\}$

countable tightness, ie. $t = \omega$

Fact

- a space is sequential if A
 = ∪_{α∈ω1} A^(α) − iteratively add limits of converging sequences
- a space is $t = \omega$ if $\overline{A} = \bigcup \{\overline{B} : B \in [A]^{\omega} \}$
- [Sapirovskii] compact $t > \omega$ iff X contains a free ω_1 -sequence

countable tightness, ie. $t = \omega$

Fact

- a space is sequential if A
 = ∪_{α∈ω1} A^(α) − iteratively add limits of converging sequences
- a space is $t = \omega$ if $\overline{A} = \bigcup \{\overline{B} : B \in [A]^{\omega} \}$
- [Sapirovskii] compact $t > \omega$ iff X contains a free ω_1 -sequence
- [Juhasz-Szentmiklossy] iff X contains a converging free ω₁-sequence

countable tightness, ie. $t = \omega$

Fact

- a space is sequential if A
 = ∪_{α∈ω1} A^(α) − iteratively add limits of converging sequences
- a space is $t = \omega$ if $\overline{A} = \bigcup \{\overline{B} : B \in [A]^{\omega} \}$
- [Sapirovskii] compact $t > \omega$ iff X contains a free ω_1 -sequence
- [Juhasz-Szentmiklossy] iff X contains a converging free ω₁-sequence

so, oddly, containing a converging ω_1 -sequence is a largeness property (recall $\beta \mathbb{N} \supset \omega_1 + 1$)

< 🗇 🕨 < 🖻 🕨

dichotomies and questions

Efimov

does each compact space contain one of ω +1 or $\beta \omega$?

.⊒ . ⊳

dichotomies and questions

Efimov

does each compact space contain one of ω +1 or $\beta \omega$?

Juhasz

does each compact space contain one of ω +1 or ω_1 +1?

dichotomies and questions

Efimov

does each compact space contain one of ω +1 or $\beta \omega$?

Juhasz

does each compact space contain one of ω +1 or ω_1 +1?

Juhasz

do $t = \omega$ compact spaces contain a G_{δ} -point or a G_{ω_1} -point?

dichotomies and questions

Efimov

does each compact space contain one of ω +1 or $\beta \omega$?

Juhasz

does each compact space contain one of ω +1 or ω_1 +1?

Juhasz

do $t = \omega$ compact spaces contain a G_{δ} -point or a G_{ω_1} -point?

celebrated Moore-Mrowka

Is every compact space of countable tightness also sequential?

Say that an Efimov space is a compact space containing neither $\omega+1$ nor $\beta\omega.$

Say that an Efimov space is a compact space containing neither $\omega+1$ nor $\beta\omega.$

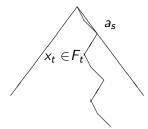
Say that a Moore-Mrowka space is a compact $t = \omega$ space which is not sequential.

Čech-Pospišil labelled trees – an object needing analysis

.⊒ . ⊳

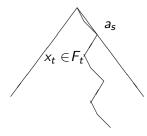
For a tree $T \subset 2^{<\mathfrak{c}}$, we may attach a clopen set a_t , we will (arrange and) let $F_t = \bigcap_{s \leq t} a_s \neq \emptyset$, and we might pick a point $x_t \in F_t$. We extend t if $|F_t| > 1$; in addition $\{a_{t0}, a_{t1}\}$ will be disjoint (and sometimes a partition).

For a tree $T \subset 2^{<\mathfrak{c}}$, we may attach a clopen set a_t , we will (arrange and) let $F_t = \bigcap_{s \leq t} a_s \neq \emptyset$, and we might pick a point $x_t \in F_t$. We extend t if $|F_t| > 1$; in addition $\{a_{t0}, a_{t1}\}$ will be disjoint (and sometimes a partition).



$$F_t$$
 is a $G_{|t|}$ -set
if $|F_t| = 1$, we have a $G_{|t|}$ -point
else $|X| \ge 2^{\omega_1}$ if no G_{δ} -points

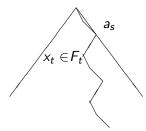
For a tree $T \subset 2^{<\mathfrak{c}}$, we may attach a clopen set a_t , we will (arrange and) let $F_t = \bigcap_{s \leq t} a_s \neq \emptyset$, and we might pick a point $x_t \in F_t$. We extend t if $|F_t| > 1$; in addition $\{a_{t0}, a_{t1}\}$ will be disjoint (and sometimes a partition).



$$\begin{array}{l} F_t \text{ is a } G_{|t|}\text{-set} \\ \text{if } |F_t| = 1, \text{ we have a } G_{|t|}\text{-point} \\ \text{else } |X| \geq 2^{\omega_1} \text{ if no } G_{\delta}\text{-points} \\ \text{Sapirovskii variant: } a_{ti} \cap \overline{\{x_s : s \subset t\}} = \emptyset \\ \text{if succeed, } X \text{ has unctble tightness} \\ \text{if fail, } X \text{ has a } G_{\delta} \text{ of weight } \mathfrak{c} \end{array}$$

i.e. a point with character $\leq \mathfrak{c}$

For a tree $T \subset 2^{<\mathfrak{c}}$, we may attach a clopen set a_t , we will (arrange and) let $F_t = \bigcap_{s \leq t} a_s \neq \emptyset$, and we might pick a point $x_t \in F_t$. We extend t if $|F_t| > 1$; in addition $\{a_{t0}, a_{t1}\}$ will be disjoint (and sometimes a partition).



$$\begin{array}{l} F_t \text{ is a } G_{|t|}\text{-set} \\ \text{if } |F_t| = 1, \text{ we have a } G_{|t|}\text{-point} \\ \text{else } |X| \geq 2^{\omega_1} \text{ if no } G_{\delta}\text{-points} \\ \text{Sapirovskii variant: } a_{ti} \cap \overline{\{x_s : s \subset t\}} = \emptyset \\ \text{if succeed, } X \text{ has unctble tightness} \\ \text{if fail, } X \text{ has a } G_{\delta} \text{ of weight } \mathfrak{c} \end{array}$$

i.e. a point with character $\leq c$

CH implies every compact $t = \omega$ space has a $G_{\leq \omega_1}$ -point.

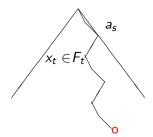
PFA and Moore-Mrowka

→ 同 → → ヨ →

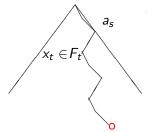
프 > 프

PFA implies that if the space X is not sequential, then there is a branch with a subsequence $\{x_{t_{\alpha}} : \alpha \in \Lambda \subset \omega_1\}$ violating Sapirovskii's condition.

PFA implies that if the space X is not sequential, then there is a branch with a subsequence $\{x_{t_{\alpha}} : \alpha \in \Lambda \subset \omega_1\}$ violating Sapirovskii's condition.

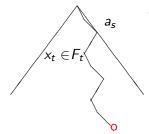


PFA implies that if the space X is not sequential, then there is a branch with a subsequence $\{x_{t_{\alpha}} : \alpha \in \Lambda \subset \omega_1\}$ violating Sapirovskii's condition.



the method of countable elementary submodels as side conditions adds free sequence (also shown from PFA(S)[S] by Todorcevic)

PFA implies that if the space X is not sequential, then there is a branch with a subsequence $\{x_{t_{\alpha}} : \alpha \in \Lambda \subset \omega_1\}$ violating Sapirovskii's condition. Also $t = \omega$ implies that there must be G_{δ} -points.



the method of countable elementary submodels as side conditions adds free sequence (also shown from PFA(S)[S] by Todorcevic)

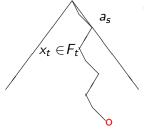
as

 $x_t \in F$

PFA implies that if the space X is not sequential, then there is a branch with a subsequence $\{x_{t_{\alpha}} : \alpha \in \Lambda \subset \omega_1\}$ violating Sapirovskii's condition. Also $t = \omega$ implies that there must be G_{δ} -points. Simply, if X is not sequential, then forcing with the proper poset $\mathfrak{c}^{\langle \omega_1}$ will shoot a branch avoiding all points of X. \check{X} is not compact (uses MA), but it is countably compact.

> the method of countable elementary submodels as side conditions adds free sequence (also shown from PFA(S)[S] by Todorcevic)

PFA implies that if the space X is not sequential, then there is a branch with a subsequence $\{x_{t_{\alpha}} : \alpha \in \Lambda \subset \omega_1\}$ violating Sapirovskii's condition. Also $t = \omega$ implies that there must be G_{δ} -points. Simply, if X is not sequential, then forcing with the proper poset $\mathfrak{c}^{<\omega_1}$ will shoot a branch avoiding all points of X. \check{X} is not compact (uses MA), but it is countably compact.



the method of countable elementary submodels as side conditions adds free sequence (also shown from PFA(S)[S] by Todorcevic)

this shows we can't control this tree (general "Čech-Pospišil" tree)

but we have to.

remark: It may not be fully branching

Definition (Koszmider / Koppelberg / Fedorchuk)

A T-algebra will be a Boolean algebra with a generating set indexed by a binary tree T, i.e. $\{a_t : t \in T\}$ and a_{t0}, a_{t1} are complements. And more properties in a minute.

Definition (Koszmider / Koppelberg / Fedorchuk)

A T-algebra will be a Boolean algebra with a generating set indexed by a binary tree T, i.e. $\{a_t : t \in T\}$ and a_{t0}, a_{t1} are complements. And more properties in a minute.

Theorem (1972)

 \diamond implies there is a Moore-Mrowka space not containing ω +1.

Definition (Koszmider / Koppelberg / Fedorchuk)

A T-algebra will be a Boolean algebra with a generating set indexed by a binary tree T, i.e. $\{a_t : t \in T\}$ and a_{t0}, a_{t1} are complements. And more properties in a minute.

Theorem (1972)

 \diamond implies there is a Moore-Mrowka space not containing ω +1.

Theorem (197?)

CH implies there is an Efimov space.

Definition (Koszmider / Koppelberg / Fedorchuk)

A T-algebra will be a Boolean algebra with a generating set indexed by a binary tree T, i.e. $\{a_t : t \in T\}$ and a_{t0}, a_{t1} are complements. And more properties in a minute.

Theorem (1972)

 \diamond implies there is a Moore-Mrowka space not containing ω +1.

Theorem (197?)

CH implies there is an Efimov space.

Proof.

Build a suitable T-algebra and take the Stone space.

< ロ > < 同 > < 三 > < 三 >

For a tree T, let bT denote T together with all its maximal branches. A family $\{a_t : t \in T\}$ is a T-generating family if

• for t on a non-successor level, $a_t = 1$

T-algebras ; their Stone spaces do not contain $\beta\mathbb{N}$

T-algebras

Basic situation

For a tree *T*, let *bT* denote *T* together with all its maximal branches. A family $\{a_t : t \in T\}$ is a *T*-generating family if

- for t on a non-successor level, $a_t = 1$
- **2** for each non-maximal $t \in T$, a_{t0} , a_{t1} are complements

T-algebras ; their Stone spaces do not contain $\beta\mathbb{N}$

Basic situation

For a tree T, let bT denote T together with all its maximal branches. A family $\{a_t : t \in T\}$ is a T-generating family if

- for t on a non-successor level, $a_t = 1$
- **②** for each non-maximal $t \in T$, a_{t0}, a_{t1} are complements
- If or all b ∈ bT, the family {at : t ⊂ b} generates an ultrafilter over the algebra generated by {as : ¬(b ⊆ s)}.

T-algebras

T-algebras ; their Stone spaces do not contain $\beta\mathbb{N}$

Basic situation

For a tree T, let bT denote T together with all its maximal branches. A family $\{a_t : t \in T\}$ is a T-generating family if

- for t on a non-successor level, $a_t = 1$
- **②** for each non-maximal $t \in T$, a_{t0}, a_{t1} are complements
- If or all b ∈ bT, the family {at : t ⊂ b} generates an ultrafilter over the algebra generated by {as : ¬(b ⊆ s)}.

T-algebras

Basic situation

For a tree T, let bT denote T together with all its maximal branches. A family $\{a_t : t \in T\}$ is a T-generating family if

- for t on a non-successor level, $a_t = 1$
- **②** for each non-maximal $t \in T$, a_{t0}, a_{t1} are complements
- If or all b ∈ bT, the family {at : t ⊂ b} generates an ultrafilter over the algebra generated by {as : ¬(b ⊆ s)}.

T-algebras

for each $b \in bT$, $\{a_t : t \le b\}$ generates a superatomic Boolean algebra; and every superatomic Boolean algebra can be expressed as a maximal branch in a *T*-algebra

Basic situation

For a tree T, let bT denote T together with all its maximal branches. A family $\{a_t : t \in T\}$ is a T-generating family if

- for t on a non-successor level, $a_t = 1$
- **②** for each non-maximal $t \in T$, a_{t0}, a_{t1} are complements
- If or all b ∈ bT, the family {at : t ⊂ b} generates an ultrafilter over the algebra generated by {as : ¬(b ⊆ s)}.

T-algebras

for each $b \in bT$, $\{a_t : t \le b\}$ generates a superatomic Boolean algebra; and every superatomic Boolean algebra can be expressed as a maximal branch in a *T*-algebra the key is that a_t can not "split F_s " if $s \perp t$

Basic situation

For a tree T, let bT denote T together with all its maximal branches. A family $\{a_t : t \in T\}$ is a T-generating family if

- for t on a non-successor level, $a_t = 1$
- **②** for each non-maximal $t \in T$, a_{t0}, a_{t1} are complements
- If or all b ∈ bT, the family {at : t ⊂ b} generates an ultrafilter over the algebra generated by {as : ¬(b ⊆ s)}.

T-algebras

for each $b \in bT$, $\{a_t : t \leq b\}$ generates a superatomic Boolean algebra; and every superatomic Boolean algebra can be expressed as a maximal branch in a T-algebra

the key is that a_t can not "split F_s " if $s \perp t$

the Stone space is in natural one-to-one correspondence with the collection of maximal branches

(4月) (4日) (4日)

T-algebras

Efimov and Moore-Mrowka status

are there T-algebras $\not\supset \omega+1$? (countably infinite quotient)

Alan Dow the set-theory of compact spaces

直 ト イヨト イヨト

are there T-algebras $\not\supset \omega+1$? (countably infinite quotient)

ullet \diamond implies an Efimov T-algebra exists

- ullet \diamond implies an Efimov T-algebra exists
- PFA implies if exist then $\supset \omega_1 + 1$

- \Diamond implies an Efimov T-algebra exists
- PFA implies if exist then $\supset \omega_1 + 1$
- ullet They exist from CH but CON with CH must be $t>\omega$

- \Diamond implies an Efimov T-algebra exists
- PFA implies if exist then $\supset \omega_1 + 1$
- $\bullet\,$ They exist from CH but CON with CH must be $t>\omega$
- CH and MA are not known to resolve Moore-Mrowka

- \diamondsuit implies an Efimov T-algebra exists
- PFA implies if exist then $\supset \omega_1 + 1$
- $\bullet\,$ They exist from CH but CON with CH must be $t>\omega$
- CH and MA are not known to resolve Moore-Mrowka
- Efimov T-algebra can not contain ω +1 × ω ₁+1 contrast with (2)

- \Diamond implies an Efimov T-algebra exists
- PFA implies if exist then $\supset \omega_1 + 1$
- They exist from CH but CON with CH must be $t > \omega$
- CH and MA are not known to resolve Moore-Mrowka
- Efimov T-algebra can not contain ω +1 × ω ₁+1 contrast with (2)
- New result: b = c implies an Efimov T-algebra exists (joint with Shelah); Not previously known even for just Efimov

T-algebras

a detour then back to Moore-Mrowka

Definition

A space X is initially ω_1 -compact if every set of size $\leq \omega_1$ has a complete accumulation point.

T-algebras

a detour then back to Moore-Mrowka

Definition

A space X is initially ω_1 -compact if every set of size $\leq \omega_1$ has a complete accumulation point.

Question

Does initially
$$\omega_1$$
-compact + $\begin{cases} t = \omega \\ \chi = \omega \end{cases}$ imply $\begin{cases} \text{compact} \\ \text{cardinality} \leq \mathfrak{c} \end{cases}$?

T-algebras

a detour then back to Moore-Mrowka

Definition

A space X is initially ω_1 -compact if every set of size $\leq \omega_1$ has a complete accumulation point.

Question

Does initially
$$\omega_1$$
-compact + $\begin{cases} t = \omega \\ \chi = \omega \end{cases}$ imply $\begin{cases} \text{compact} \\ \text{cardinality} \leq \mathfrak{c} \end{cases}$?

Theorem (CH, PFA, Cohen)

initially ω_1 -compact $t = \omega$ spaces are **compact**, and so, $\chi = \omega$ ones (and even separable $t = \omega$ under PFA) have cardinality at most c.

T-algebras

a detour then back to Moore-Mrowka

Definition

A space X is initially ω_1 -compact if every set of size $\leq \omega_1$ has a complete accumulation point.

Question

Does initially
$$\omega_1$$
-compact + $\begin{cases} t = \omega \\ \chi = \omega \end{cases}$ imply $\begin{cases} \text{compact} \\ \text{cardinality} \leq \mathfrak{c} \end{cases}$?

Theorem (CH, PFA, Cohen)

initially ω_1 -compact $t = \omega$ spaces are **compact**, and so, $\chi = \omega$ ones (and even separable $t = \omega$ under PFA) have cardinality at most c.

T-algebras

a detour then back to Moore-Mrowka

Definition

A space X is initially ω_1 -compact if every set of size $\leq \omega_1$ has a complete accumulation point.

Question

Does initially
$$\omega_1$$
-compact +
$$\begin{cases} t = \omega \\ \chi = \omega \end{cases}$$
 imply
$$\begin{cases} \text{compact} \\ \text{cardinality} \leq \mathfrak{c} \end{cases}$$
?

Theorem (CH, PFA, Cohen)

initially ω_1 -compact $t = \omega$ spaces are **compact**, and so, $\chi = \omega$ ones (and even separable $t = \omega$ under PFA) have cardinality at most c.

[ZFC] Any compactification of a non-compact initially ω_1 -compact $t = \omega$ space is a Moore-Mrowka space.

T-algebras

initially ω_1 -compact in ZFC and MA

the story here starts with Baumgartner-Shelah, inventing the Δ -function in order to produce a ccc poset of finite conditions

T-algebras

initially ω_1 -compact in ZFC and MA

the story here starts with Baumgartner-Shelah, inventing the Δ -function in order to produce a ccc poset of finite conditions

Theorem

It is consistent to have a (chain) T-algebra with all of the ω_2 many scattering levels countable.

(ω_1 -compact, $t = \omega$ but not countably compact)

T-algebras

initially ω_1 -compact in ZFC and MA

the story here starts with Baumgartner-Shelah, inventing the Δ -function in order to produce a ccc poset of finite conditions

Theorem

It is consistent to have a (chain) T-algebra with all of the ω_2 many scattering levels countable.

(ω_1 -compact, $t = \omega$ but not countably compact)

Luckily I went to the Velickovic workshop in the Appalachian set-theory series where he showed

T-algebras

initially ω_1 -compact in ZFC and MA

the story here starts with Baumgartner-Shelah, inventing the Δ -function in order to produce a ccc poset of finite conditions

Theorem

It is consistent to have a (chain) T-algebra with all of the ω_2 many scattering levels countable.

(ω_1 -compact, $t = \omega$ but not countably compact)

Luckily I went to the Velickovic workshop in the Appalachian set-theory series where he showed

Proposition

Mixed cardinality elementary submodels as side conditions give a proper poset of finite conditions that add the Baumgartner-Shelah example.

< ロ > < 同 > < 回 > < 回 > < 回 > <

initially ω_1 -compact in ZFC and MA

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to obtain

프 () () () (

initially ω_1 -compact in ZFC and MA

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to obtain

Theorem

 It is consistent to have initially ω₁-compact t = ω space which is not compact.

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to obtain

Theorem

- It is consistent to have initially ω₁-compact t = ω space which is not compact.
- Using generically blowing up points to Cantor sets (Juhasz-Koszmider-Soukup) it can be made first countable

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to obtain

Theorem

- It is consistent to have initially ω₁-compact t = ω space which is not compact.
- Using generically blowing up points to Cantor sets (Juhasz-Koszmider-Soukup) it can be made first countable

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to obtain

Theorem

- It is consistent to have initially ω₁-compact t = ω space which is not compact.
- Using generically blowing up points to Cantor sets (Juhasz-Koszmider-Soukup) it can be made first countable

These T-algebra chain examples are intrinsically of size $\mathfrak c$ and MA certainly does not hold.

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to obtain

Theorem

- It is consistent to have initially ω₁-compact t = ω space which is not compact.
- Using generically blowing up points to Cantor sets (Juhasz-Koszmider-Soukup) it can be made first countable

These T-algebra chain examples are intrinsically of size c and MA certainly does not hold. Can the Neeman method be used?

Let $T \subset 2^{<\omega_2}$, and use Velickovic approach of mixed cardinality finite ϵ -chains of elementary submodels to define a poset \mathbb{P}_T adding a Rabus style T-algebra

Conditions

Let $T \subset 2^{<\omega_2}$, and use Velickovic approach of mixed cardinality finite ϵ -chains of elementary submodels to define a poset \mathbb{P}_T adding a Rabus style T-algebra

Conditions

- A condition p consists of $(H_p, \{a_t^p : t \in H_p\}, \mathcal{M}_p)$
 - H_p is an adequately closed finite subset of T

Let $T \subset 2^{<\omega_2}$, and use Velickovic approach of mixed cardinality finite ϵ -chains of elementary submodels to define a poset \mathbb{P}_T adding a Rabus style T-algebra

Conditions

- H_p is an adequately closed finite subset of T
- 2 $t \in a_t^p$ is a subset of H_p , $\{a_t^p : t \in H_p\}$ generates an H_p -algeba

Let $T \subset 2^{<\omega_2}$, and use Velickovic approach of mixed cardinality finite ϵ -chains of elementary submodels to define a poset \mathbb{P}_T adding a Rabus style T-algebra

Conditions

- H_p is an adequately closed finite subset of T
- $\ \, { \ \, { 0 } \ \, } \ t \in a^{\rho}_t \ \, { is a subset of } \ \, H_{\rho}, \ \, \{a^{\rho}_t:t\in H_{\rho}\} \ \, { generates an } \ \, H_{\rho} \mbox{-algeba}$
- \mathcal{M}_p is an ϵ -chain of countable and *internally approachable* elementary submodels of $(H(\omega_2), a \text{ well order})$.

Let $T \subset 2^{<\omega_2}$, and use Velickovic approach of mixed cardinality finite ϵ -chains of elementary submodels to define a poset \mathbb{P}_T adding a Rabus style T-algebra

Conditions

- H_p is an adequately closed finite subset of T
- $\ \, { \ \, { 0 } \ \, } \ t \in a^{p}_{t} \ \, { is a subset of } \ \, H_{p}, \ \, \{a^{p}_{t}:t\in H_{p}\} \ \, { generates an } \ \, H_{p} \mbox{-algeba}$
- \mathcal{M}_p is an ϵ -chain of countable and *internally approachable* elementary submodels of $(H(\omega_2), a \text{ well order})$.
- $\{a_t : t \in M \cap H_p\}$ generates a subalgebra $\subset M$ for each $M \in \mathcal{M}_p$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 - のへで

Theorem

The proper poset $\mathbb{P} = \mathbb{P}_T$ satisfies

adds no new uncountable cofinality branches to T

Theorem

The proper poset $\mathbb{P} = \mathbb{P}_T$ satisfies

- adds no new uncountable cofinality branches to T
- **②** branches with countable cofinality are points of $\chi = \omega$

Theorem

The proper poset $\mathbb{P} = \mathbb{P}_T$ satisfies

- **1** adds no new uncountable cofinality branches to T
- **②** branches with countable cofinality are points of $\chi = \omega$
- **③** cofinality ω_2 branches are ω and ω_1 inaccessible

Theorem

The proper poset $\mathbb{P} = \mathbb{P}_T$ satisfies

- **1** adds no new uncountable cofinality branches to T
- **②** branches with countable cofinality are points of $\chi = \omega$
- **(**) cofinality ω_2 branches are ω and ω_1 inaccessible
- all this is preserved by FS small ccc forcing (Souslin-free) so we can get MA to hold

Theorem

The proper poset $\mathbb{P} = \mathbb{P}_T$ satisfies

- **1** adds no new uncountable cofinality branches to T
- **②** branches with countable cofinality are points of $\chi = \omega$
- **(**) cofinality ω_2 branches are ω and ω_1 inaccessible
- all this is preserved by FS small ccc forcing (Souslin-free) so we can get MA to hold

The set X of all ultrafilters from branches with countable cofinality is first countable and dense in $S(B_T)$. If T has no cofinality ω_1 -branches, X is initially ω_1 -compact.

T-algebras

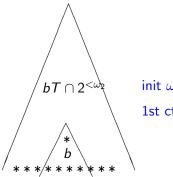
answer Arhangelskii's question in negative

answer Arhangelskii's question in negative

T-algebras

answer Arhangelskii's question in negative

but what does this give us?

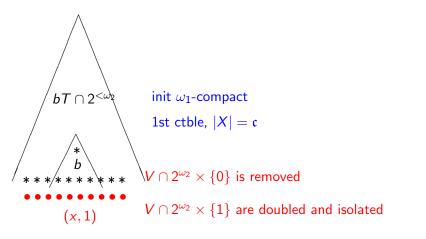


init ω_1 -compact

1st ctble, $|X| = \mathfrak{c}$

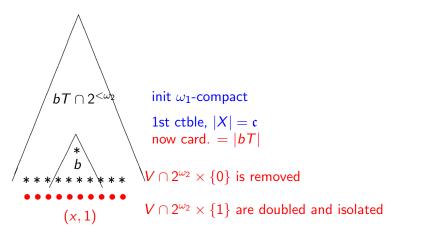
T-algebras

answer Arhangelskii's question in negative



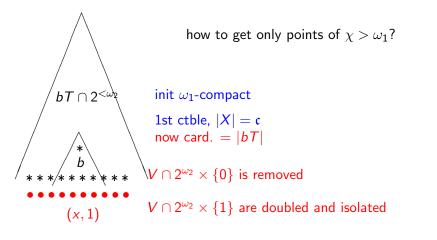
T-algebras

answer Arhangelskii's question in negative



T-algebras

answer Arhangelskii's question in negative



another application segues into my next and final topic

-∢ ≣ ▶

another application segues into my next and final topic

Theorem

If we take T to be an \aleph_2 -Souslin tree with no branches of cofinality ω_1 , then X itself is first-countable and compact, but in the forcing extension by T, it ceases to be Lindelöf.

another application segues into my next and final topic

Theorem

If we take T to be an \aleph_2 -Souslin tree with no branches of cofinality ω_1 , then X itself is first-countable and compact, but in the forcing extension by T, it ceases to be Lindelöf.

and (even before the forcing) has $\aleph_1\text{-sized}$ sets not contained in an $\aleph_1\text{-sized}$ Lindelof subset

T-algebras

Husek question about small diagonal

A compact space X has a small diagonal if the quotient space X^2/Δ_X contains no converging ω_1 -sequence.

Theorem

In many models (PFA, CH, Cohen) each compact space with a small diagonal is metrizable. Is this true in ZFC?

T-algebras

Husek question about small diagonal

A compact space X has a small diagonal if the quotient space X^2/Δ_X contains no converging ω_1 -sequence.

Theorem

In many models (PFA, CH, Cohen) each compact space with a small diagonal is metrizable. Is this true in ZFC?

Theorem

If X is compact with small diagonal, then metrizable iff the Lindelof sets are stationary in $[X]^{\omega_1}$

T-algebras

Husek question about small diagonal

A compact space X has a small diagonal if the quotient space X^2/Δ_X contains no converging ω_1 -sequence.

Theorem

In many models (PFA, CH, Cohen) each compact space with a small diagonal is metrizable. Is this true in ZFC?

Theorem

If X is compact with small diagonal, then metrizable iff the Lindelof sets are stationary in $[X]^{\omega_1}$

Questions

We do not know if X contains $\omega+1$, points of countable character, has cardinality at most \mathfrak{c} , and all other metric type properties.

< ロ > < 同 > < 回 > < 回 > < 回 > <

models for compact small diagonal is metrizable

A powerful consequence of not containing any converging $\omega_1\text{-sequences}$ emerges

Theorem

In any model obtained by FS iteration of small σ -linked posets a compact space X contains no converging ω_1 -sequences iff it is first-countable and Lindelof sets are stationary in $[X]^{\aleph_1}$.

It follows that compact spaces of small diagonal are metrizable in such a model.

models for compact small diagonal is metrizable

A powerful consequence of not containing any converging $\omega_1\text{-sequences emerges}$

Theorem

In any model obtained by FS iteration of small σ -linked posets a compact space X contains no converging ω_1 -sequences iff it is first-countable and Lindelof sets are stationary in $[X]^{\aleph_1}$.

Lemma

A key step was from a Junqueira-Koszmider paper showing that forcing with such posets preserve that compact spaces stay Lindelof in the extension.

It follows that compact spaces of small diagonal are metrizable in such a model.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 - のへで

 Moore-Mrowka is independent but its status in other models is interesting (e.g. Todorcevic established in PFA(S)[S])

- Moore-Mrowka is independent but its status in other models is interesting (e.g. Todorcevic established in PFA(S)[S])
- onn-existence of Efimov space is not known to be consistent b = c is pretty weak and s < c is easy; NCF?</p>

- Moore-Mrowka is independent but its status in other models is interesting (e.g. Todorcevic established in PFA(S)[S])
- **②** non-existence of Efimov space is not known to be consistent $\mathfrak{b} = \mathfrak{c}$ is pretty weak and $\mathfrak{s} < \mathfrak{c}$ is easy; NCF?
- Interizability of compact small diagonal space is possibly ZFC?

- Moore-Mrowka is independent but its status in other models is interesting (e.g. Todorcevic established in PFA(S)[S])
- $\label{eq:basic} \textcircled{0.5mm}{0.5mm} \textbf{0} \quad \textbf{0} = \mathfrak{c} \text{ is pretty weak and } \mathfrak{s} < \mathfrak{c} \text{ is easy; NCF?}$
- Interview of compact small diagonal space is possibly ZFC?
- spectrum of sequential order is unknown above 2

- Moore-Mrowka is independent but its status in other models is interesting (e.g. Todorcevic established in PFA(S)[S])
- $\label{eq:basic} \textcircled{0.5mm}{0.5mm} \textbf{0} \quad \textbf{0} = \mathfrak{c} \text{ is pretty weak and } \mathfrak{s} < \mathfrak{c} \text{ is easy; NCF?}$
- Intervision of compact small diagonal space is possibly ZFC?
- spectrum of sequential order is unknown above 2
- compact $+ t = \omega$ may imply exists G_{ω_1} -point

- Moore-Mrowka is independent but its status in other models is interesting (e.g. Todorcevic established in PFA(S)[S])
- $\label{eq:basic} \textcircled{0.5mm}{0.5mm} {\mathfrak S} = {\mathfrak c} \mbox{ is pretty weak and } {\mathfrak s} < {\mathfrak c} \mbox{ is easy; NCF? }$
- Intervision of compact small diagonal space is possibly ZFC?
- spectrum of sequential order is unknown above 2
- compact $+ t = \omega$ may imply exists G_{ω_1} -point
- must a compact space contain at least one of a converging ω or ω₁ sequence.

- Moore-Mrowka is independent but its status in other models is interesting (e.g. Todorcevic established in PFA(S)[S])
- $\label{eq:basic} \textcircled{0.5mm}{0.5mm} \textbf{0} \quad \textbf{0} = \mathfrak{c} \text{ is pretty weak and } \mathfrak{s} < \mathfrak{c} \text{ is easy; NCF?}$
- Intervision of compact small diagonal space is possibly ZFC?
- spectrum of sequential order is unknown above 2
- compact $+ t = \omega$ may imply exists G_{ω_1} -point
- must a compact space contain at least one of a converging ω or ω₁ sequence.
- Scarborough-Stone: is the product of (all) sequentially compact spaces still countably compact