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Basic situation

introduction

| want to discuss some of the set-theory arising in the investigation
of the extent to which converging sequences control topological
behavior in compact spaces.

I will discuss historical background in order to motivate some of
my own newish - new results. I'll try to present it to show them as
natural questions and also end with a brief list of unsolved
attractive problems.

Converging sequences in this talk will come in two flavors

w—+1 means converging sequence with limit
w1+1 means co-countably converging
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Gs-points, Frechet

building up more complicated spaces

compact metric
2<w

XXX X Wl

X
compact Frechet
o<w compact non-metric o<w —1st ctble
1st ctble
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< blow up point
to Cantor set to get x = w
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converging sequences but not Frechet

compact sequential
— Frechet
seq’l order 2

*)Z** * % % madf
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®3©  Cantor set blow-up fails

[Haydon]
ElblNI Zlﬁ Bw 7t =w? db,N Dw+1
completely —
divergent N N> J—=J#pN
bNDw+1 but boN O Bw

w+1¢ BN D wi+l-sequence

note: in fwi , wy is completely divergent, but Sw; D (wi+1)

Alan Dow the set-theory of compact spaces



Basic situation

countable tightness, ie. t = w

Alan Dow the set-theory of compact spaces



Basic situation

countable tightness, ie. t = w

® a space is sequential if A = Unew A@) — jteratively add limits
of converging sequences

Alan Dow the set-theory of compact spaces



Basic situation

countable tightness, ie. t = w

® a space is sequential if A = Unew A@) — jteratively add limits
of converging sequences

o aspaceist=w ifA=|J{B: B € [A]“}

Alan Dow the set-theory of compact spaces



Basic situation

countable tightness, ie. t = w

® a space is sequential if A = Unew A@) — jteratively add limits
of converging sequences

o aspaceist=w ifA=|J{B: B € [A]“}

o [Sapirovskii] compact t > w iff X contains a free wi-sequence

Alan Dow the set-theory of compact spaces



Basic situation

countable tightness, ie. t = w

® a space is sequential if A = Unew A@) — jteratively add limits
of converging sequences

o aspaceist=w ifA=|J{B: B € [A]“}

o [Sapirovskii] compact t > w iff X contains a free wi-sequence
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countable tightness, ie. t = w

® a space is sequential if A = Unew A@) — jteratively add limits
of converging sequences

o aspaceist=w ifA=|J{B: B € [A]“}
o [Sapirovskii] compact t > w iff X contains a free wi-sequence

o [Juhasz-Szentmiklossy] iff X contains a converging free
w1-sequence

so, oddly, containing a converging wi-sequence is a largeness
property (recall SN D wi+1)
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Basic situation

dichotomies and questions

does each compact space contain one of w+1 or Sw? l

does each compact space contain one of w+1 or wi+17 l
do t = w compact spaces contain a Gs-point or a G, -point? l
celebrated Moore-Mrowka

Is every compact space of countable tightness also sequential?
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Say that an Efimov space is a compact space containing neither
w + 1 nor Sw.
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Basic situation

Say that an Efimov space is a compact space containing neither
w + 1 nor Sw.

Say that a Moore-Mrowka space is a compact t = w space which
is not sequential.
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Cech-Pospigil labelled trees — an object needing analysis

For a tree T C 2<% we may attach a clopen set a;, we will
(arrange and) let F; = ()., as # ), and we might pick a point
x¢ € F;. We extend t if |F| > 1; in addition {a0, ar1} will be
disjoint (and sometimes a partition).
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(arrange and) let F; = ()., as # ), and we might pick a point
x¢ € F;. We extend t if |F| > 1; in addition {a0, ar1} will be
disjoint (and sometimes a partition).

Ft is a Gy -set
if |Ft| = 1, we have a Gj4-point
else | X| > 2“1 if no Gs-points
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Cech-Pospigil labelled trees — an object needing analysis

For a tree T C 2<% we may attach a clopen set a;, we will
(arrange and) let F; = ()., as # ), and we might pick a point
x¢ € F;. We extend t if |F| > 1; in addition {a0, ar1} will be
disjoint (and sometimes a partition).

Ft is a Gy -set

if |Ft| = 1, we have a Gj4-point

else | X| > 2“1 if no Gs-points

Sapirovskii variant: a; N{xs:s C t} =10
if succeed, X has unctble tightness

if fail, X has a G; of weight ¢

as

Xt EFt

i.e. a point with character <c
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Cech-Pospigil labelled trees — an object needing analysis

For a tree T C 2<% we may attach a clopen set a;, we will
(arrange and) let F; = ()., as # ), and we might pick a point
x¢ € F;. We extend t if |F| > 1; in addition {a0, ar1} will be
disjoint (and sometimes a partition).

Ft is a Gy -set

if |Ft| = 1, we have a Gj4-point

else | X| > 2“1 if no Gs-points

Sapirovskii variant: a; N{xs:s C t} =10
if succeed, X has unctble tightness

if fail, X has a G; of weight ¢

as

Xt EFt

i.e. a point with character <c
CH implies every compact t = w space has a G<,-point.
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PFA and Moore-Mrowka

PFA implies that if the space X is not sequential, then there is a
branch with a subsequence {x¢, : @« € A C w1} violating
Sapirovskii's condition.
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PFA and Moore-Mrowka

PFA implies that if the space X is not sequential, then there is a
branch with a subsequence {x¢, : @« € A C w1} violating
Sapirovskii's condition.

the method of countable elementary submodels
as side conditions adds free sequence

b €F; (also shown from PFA(S)[S] by Todorcevic)
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Basic situation

PFA and Moore-Mrowka

PFA implies that if the space X is not sequential, then there is a
branch with a subsequence {x¢, : @« € A C w1} violating
Sapirovskii's condition. Also t = w implies that there must be

Gs-points.
the method of countable elementary submodels
as . g
as side conditions adds free sequence
(also shown from PFA(S)[S] by Todorcevic)
Xt EFt
o
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PFA and Moore-Mrowka

PFA implies that if the space X is not sequential, then there is a
branch with a subsequence {x¢, : @« € A C w1} violating
Sapirovskii's condition. Also t = w implies that there must be
Gs-points. Simply, if X is not sequential, then forcing with the
proper poset ¢<“! will shoot a branch avoiding all points of X. X
is not compact (uses MA), but it is countably compact.

the method of countable elementary submodels
as side conditions adds free sequence
(also shown from PFA(S)[S] by Todorcevic)

as

Xt EFt
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Basic situation

PFA and Moore-Mrowka

PFA implies that if the space X is not sequential, then there is a
branch with a subsequence {x¢, : @« € A C w1} violating

Sapirovskii's condition. Also t = w implies that there must be
Gs-points. Simply, if X is not sequential, then forcing with the
proper poset ¢<“! will shoot a branch avoiding all points of X. X

is not compact (uses MA), but it is countably compact.

the method of countable elementary submodels

s as side conditions adds free sequence
(also shown from PFA(S)[S] by Todorcevic)
Xt EFt
this shows we can’t control this tree
(general “Cech-Pospisil” tree)
o but we have to.

remark: It may not be fully branching
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Basic situation

Fedorchuk / Ostaszewski embrace the tree

Definition (Koszmider / Koppelberg / Fedorchuk)

A T-algebra will be a Boolean algebra with a generating set
indexed by a binary tree T, i.e. {a;:t € T} and a, ar1 are
complements. And more properties in a minute.
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A T-algebra will be a Boolean algebra with a generating set
indexed by a binary tree T, i.e. {a;:t € T} and a, ar1 are
complements. And more properties in a minute.

Theorem (1972)

& implies there is a Moore-Mrowka space not containing w—1.
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Basic situation

Fedorchuk / Ostaszewski embrace the tree

Definition (Koszmider / Koppelberg / Fedorchuk)

A T-algebra will be a Boolean algebra with a generating set
indexed by a binary tree T, i.e. {a;:t € T} and a, ar1 are
complements. And more properties in a minute.

Theorem (1972)

& implies there is a Moore-Mrowka space not containing w—1.

Theorem (1977)

CH implies there is an Efimov space.

Build a suitable T-algebra and take the Stone space.
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T-algebras Tlpeies

T-algebras ; their Stone spaces do not contain SN

For a tree T, let bT denote T together with all its maximal
branches. A family {a;: t € T} is a T-generating family if

@ for t on a non-successor level, a; =1
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@ for t on a non-successor level, a; =1
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over the algebra generated by {as : =(b C s)}.
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@ for t on a non-successor level, a; =1
@ for each non-maximal t € T, ayg, ar1 are complements

@ for all b € bT, the family {a; : t C b} generates an ultrafilter
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for each b € bT, {a; : t < b} generates a superatomic Boolean
algebra; and every superatomic Boolean algebra can be expressed
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T-algebras ; their Stone spaces do not contain SN

For a tree T, let bT denote T together with all its maximal
branches. A family {a;: t € T} is a T-generating family if

@ for t on a non-successor level, a; =1
@ for each non-maximal t € T, ayg, ar1 are complements

@ for all b € bT, the family {a; : t C b} generates an ultrafilter
over the algebra generated by {as : =(b C s)}.

for each b € bT, {a; : t < b} generates a superatomic Boolean
algebra; and every superatomic Boolean algebra can be expressed
as a maximal branch in a T-algebra

the key is that a; can not “split Fs" if s Lt
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T-algebras Tlpeies

T-algebras ; their Stone spaces do not contain SN

For a tree T, let bT denote T together with all its maximal
branches. A family {a;: t € T} is a T-generating family if

@ for t on a non-successor level, a; =1
@ for each non-maximal t € T, ayg, ar1 are complements

@ for all b € bT, the family {a; : t C b} generates an ultrafilter
over the algebra generated by {as : =(b C s)}.

for each b € bT, {a; : t < b} generates a superatomic Boolean
algebra; and every superatomic Boolean algebra can be expressed
as a maximal branch in a T-algebra

the key is that a; can not “split Fs" if s Lt

the Stone space is in natural one-to-one correspondence with the
collection of maximal branches
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are there T-algebras  w+17 (countably infinite quotient)
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are there T-algebras  w+17 (countably infinite quotient)

¢ implies an Efimov T-algebra exists

PFA implies if exist then D wy+1

They exist from CH but CON with CH must be t > w
CH and MA are not known to resolve Moore-Mrowka
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Efimov and Moore-Mrowka status

are there T-algebras  w+17 (countably infinite quotient)

¢ implies an Efimov T-algebra exists
PFA implies if exist then D wy+1
They exist from CH but CON with CH must be t > w

CH and MA are not known to resolve Moore-Mrowka

Efimov T-algebra can not contain w+1 x w;+1
contrast with (2)
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T-algebras Tlpeies

Efimov and Moore-Mrowka status

are there T-algebras  w+17 (countably infinite quotient)

o < implies an Efimov T-algebra exists

@ PFA implies if exist then D wi+1

@ They exist from CH but CON with CH must be t > w

@ CH and MA are not known to resolve Moore-Mrowka

@ Efimov T-algebra can not contain w+1 x wi+1
contrast with (2)

o New result: b = ¢ implies an Efimov T-algebra exists (joint
with Shelah) ; Not previously known even for just Efimov
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T-algebras

T-algebras

a detour then back to Moore-Mrowka

Definition

A space X is initially wi-compact if every set of size <w; has a
complete accumulation point.
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a detour then back to Moore-Mrowka

A space X is initially wi-compact if every set of size <w; has a
complete accumulation point.

<

Does initiall ¢ t=w . I compact
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Alan Dow the set-theory of compact spaces



T-algebras Tlpeies

a detour then back to Moore-Mrowka

A space X is initially wi-compact if every set of size <w; has a
complete accumulation point.

compact
cardinality <c

o t=w .
Does initially wi-compact + {X —w imply {

Theorem (CH, PFA, Cohen)

initially wi-compact t = w spaces are compact, and so,
X = w ones (and even separable t = w under PFA) have cardinality
at most c.
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A space X is initially wi-compact if every set of size <w; has a
complete accumulation point.

compact
cardinality <c

o t=w .
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Theorem (CH, PFA, Cohen)

initially wi-compact t = w spaces are compact, and so,
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T-algebras Tlpeies

a detour then back to Moore-Mrowka

A space X is initially wi-compact if every set of size <w; has a
complete accumulation point.

D iall ¢ t=w | compact
oes initially wj-compact + — imply il <

Theorem (CH, PFA, Cohen)

initially wi-compact t = w spaces are compact, and so,

X = w ones (and even separable t = w under PFA) have cardinality
at most c.

[ZFC] Any compactification of a non-compact initially wi-compact
t = w space is a Moore-Mrowka space.
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T-algebras Tlpeies

initially wi-compact in ZFC and MA

the story here starts with Baumgartner-Shelah, inventing the
A-function in order to produce a ccc poset of finite conditions
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the story here starts with Baumgartner-Shelah, inventing the
A-function in order to produce a ccc poset of finite conditions

It is consistent to have a (chain) T-algebra with all of the w, many
scattering levels countable.
(w1-compact, t = w but not countably compact)
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A-function in order to produce a ccc poset of finite conditions

It is consistent to have a (chain) T-algebra with all of the w, many
scattering levels countable.
(w1-compact, t = w but not countably compact)

Luckily I went to the Velickovic workshop in the Appalachian
set-theory series where he showed
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T-algebras

T-algebras

initially wi-compact in ZFC and MA

the story here starts with Baumgartner-Shelah, inventing the
A-function in order to produce a ccc poset of finite conditions

It is consistent to have a (chain) T-algebra with all of the w, many
scattering levels countable.
(w1-compact, t = w but not countably compact)

Luckily I went to the Velickovic workshop in the Appalachian
set-theory series where he showed

Proposition

Mixed cardinality elementary submodels as side conditions give a
proper poset of finite conditions that add the Baumgartner-Shelah
example.
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T-algebras Tlpeies

initially wi-compact in ZFC and MA

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to
obtain
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initially wi-compact in ZFC and MA

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to
obtain

@ [t is consistent to have initially wi-compact t = w space which
is not compact.
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initially wi-compact in ZFC and MA

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to
obtain

@ [t is consistent to have initially wi-compact t = w space which
is not compact.

o Using generically blowing up points to Cantor sets
(Juhasz-Koszmider-Soukup) it can be made first countable
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T-algebras Tlpeies

initially wi-compact in ZFC and MA

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to
obtain

@ [t is consistent to have initially wi-compact t = w space which
is not compact.

o Using generically blowing up points to Cantor sets
(Juhasz-Koszmider-Soukup) it can be made first countable

These T-algebra chain examples are intrinsically of size ¢ and MA
certainly does not hold.
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T-algebras Tlpeies

initially wi-compact in ZFC and MA

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to
obtain

@ [t is consistent to have initially wi-compact t = w space which
is not compact.

o Using generically blowing up points to Cantor sets
(Juhasz-Koszmider-Soukup) it can be made first countable

These T-algebra chain examples are intrinsically of size ¢ and MA
certainly does not hold. Can the Neeman method be used?
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Neeman’'s method and a new example

Let T C 2<“2, and use Velickovic approach of mixed cardinality
finite e-chains of elementary submodels to define a poset Pr
adding a Rabus style T-algebra

Conditions
A condition p consists of (Hp, {af : t € Hp}, M)
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O H, is an adequately closed finite subset of T
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Neeman’'s method and a new example

Let T C 2<“2, and use Velickovic approach of mixed cardinality
finite e-chains of elementary submodels to define a poset Pr
adding a Rabus style T-algebra

Conditions
A condition p consists of (Hp, {af : t € Hp}, M)
O H, is an adequately closed finite subset of T
Q t € alisasubset of H,, {af : t € H,} generates an Hy-algeba

Alan Dow the set-theory of compact spaces



T-algebras Tlpeies

Neeman’'s method and a new example

Let T C 2<“2, and use Velickovic approach of mixed cardinality
finite e-chains of elementary submodels to define a poset Pr
adding a Rabus style T-algebra

Conditions
A condition p consists of (Hp, {af : t € Hp}, M)
O H, is an adequately closed finite subset of T
Q t € alisasubset of H,, {af : t € H,} generates an Hy-algeba

@ M, is an e-chain of countable and internally approachable
elementary submodels of (H(wz),a well order).
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Neeman’'s method and a new example

Let T C 2<“2, and use Velickovic approach of mixed cardinality
finite e-chains of elementary submodels to define a poset Pr
adding a Rabus style T-algebra

Conditions
A condition p consists of (Hp, {af : t € Hp}, M)
O H, is an adequately closed finite subset of T
Q t € alisasubset of H,, {af : t € H,} generates an Hy-algeba
@ M, is an e-chain of countable and internally approachable
elementary submodels of (H(w2),a well order).
Q {a::t € M H,} generates a subalgebra C M for each
M e M,
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The proper poset P = Pt satisfies

@ adds no new uncountable cofinality branches to T
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@ branches with countable cofinality are points of x = w
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@ adds no new uncountable cofinality branches to T
@ branches with countable cofinality are points of x = w

© cofinality wy branches are w and wy inaccessible
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T-algebras

The proper poset P = Pt satisfies

@ adds no new uncountable cofinality branches to T

@ branches with countable cofinality are points of x = w
© cofinality wy branches are w and wy inaccessible
%)

all this is preserved by FS small ccc forcing (Souslin-free) so
we can get MA to hold
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T-algebras

The proper poset P = Pt satisfies

@ adds no new uncountable cofinality branches to T

@ branches with countable cofinality are points of x = w
© cofinality wy branches are w and wy inaccessible
%)

all this is preserved by FS small ccc forcing (Souslin-free) so
we can get MA to hold

v

The set X of all ultrafilters from branches with countable cofinality
is first countable and dense in S(B7). If T has no cofinality
wi-branches, X is initially wi-compact.
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answer Arhangelskii's question in negative
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but what does this give us?
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answer Arhangelskii's question in negative

but what does this give us?

init wi-compact

Ist ctble, |[X| =¢
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answer Arhangelskii's question in negative

but what does this give us?

init wi-compact

Ist ctble, |[X| =¢

% % %/ % % k% % % V|’T2‘*’2><{O}isremoved

(x,1) V' N2+ x {1} are doubled and isolated

Alan Dow the set-theory of compact spaces



T-algebras

T-algebras

answer Arhangelskii's question in negative

but what does this give us?

init wi-compact

Ist ctble, |[X| =¢
now card. = |bT|

% % %/ % % k% % % V|’T2‘*’2><{O}isremoved

(x,1) V' N2+ x {1} are doubled and isolated
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T-algebras

answer Arhangelskii's question in negative

but what does this give us?

how to get only points of xy > w1?

init wi-compact

Ist ctble, |[X| =¢
now card. = |bT|

% % %/ % % k% % % V|’T2‘*’2><{O}isremoved

(x,1) V' N2+ x {1} are doubled and isolated
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another application segues into my next and final topic
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another application segues into my next and final topic

Theorem

If we take T to be an Ny-Souslin tree with no branches of
cofinality w1, then X itself is first-countable and compact, but in
the forcing extension by T, it ceases to be Lindelof.
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T-algebras

another application segues into my next and final topic

Theorem

If we take T to be an Ny-Souslin tree with no branches of
cofinality w1, then X itself is first-countable and compact, but in
the forcing extension by T, it ceases to be Lindelof.

and (even before the forcing) has Ni-sized sets not contained in an
N1-sized Lindelof subset
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Husek question about small diagonal

A compact space X has a small diagonal if the quotient space
X2/Ax contains no converging wi-sequence.

In many models (PFA, CH, Cohen) each compact space with a
small diagonal is metrizable. Is this true in ZFC?

Alan Dow the set-theory of compact spaces



T-algebras Tlpeies

Husek question about small diagonal

A compact space X has a small diagonal if the quotient space
X2/Ax contains no converging wi-sequence.

Theorem

In many models (PFA, CH, Cohen) each compact space with a
small diagonal is metrizable. Is this true in ZFC?

Theorem

| A

If X is compact with small diagonal, then
metrizable iff the Lindelof sets are stationary in [X]*“!
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Husek question about small diagonal

A compact space X has a small diagonal if the quotient space
X2/Ax contains no converging wi-sequence.

Theorem

In many models (PFA, CH, Cohen) each compact space with a
small diagonal is metrizable. Is this true in ZFC?

Theorem

| A

If X is compact with small diagonal, then
metrizable iff the Lindelof sets are stationary in [X]*“!

We do not know if X contains w1, points of countable character,
has cardinality at most ¢, and all other metric type properties.
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models for compact small diagonal is metrizable

A powerful consequence of not containing any converging
w1-Sequences emerges

In any model obtained by FS iteration of small o-linked posets a
compact space X contains no converging wi-sequences iff
it is first-countable and Lindelof sets are stationary in [X].

It follows that compact spaces of small diagonal are metrizable in
such a model.
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models for compact small diagonal is metrizable

A powerful consequence of not containing any converging
w1-Sequences emerges

Theorem

In any model obtained by FS iteration of small o-linked posets a
compact space X contains no converging wi-sequences iff
it is first-countable and Lindelof sets are stationary in [X].

Lemma

| A\

A key step was from a Junqueira-Koszmider paper showing that
forcing with such posets preserve that compact spaces stay
Lindelof in the extension.

\

It follows that compact spaces of small diagonal are metrizable in
such a model.
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T-algebras

@ Moore-Mrowka is independent but its status in other models
is interesting (e.g. Todorcevic established in PFA(S)[S])
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@ Moore-Mrowka is independent but its status in other models
is interesting (e.g. Todorcevic established in PFA(S)[S])

@ non-existence of Efimov space is not known to be consistent
b = c is pretty weak and s < ¢ is easy; NCF?
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@ non-existence of Efimov space is not known to be consistent
b = c is pretty weak and s < ¢ is easy; NCF?

© metrizability of compact small diagonal space is possibly ZFC?
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@ Moore-Mrowka is independent but its status in other models
is interesting (e.g. Todorcevic established in PFA(S)[S])

@ non-existence of Efimov space is not known to be consistent
b = c is pretty weak and s < ¢ is easy; NCF?

© metrizability of compact small diagonal space is possibly ZFC?
@ spectrum of sequential order is unknown above 2
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@ Moore-Mrowka is independent but its status in other models
is interesting (e.g. Todorcevic established in PFA(S)[S])

@ non-existence of Efimov space is not known to be consistent
b = c is pretty weak and s < ¢ is easy; NCF?

metrizability of compact small diagonal space is possibly ZFC?

spectrum of sequential order is unknown above 2

© 00

compact + t = w may imply exists G,,-point
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@ Moore-Mrowka is independent but its status in other models
is interesting (e.g. Todorcevic established in PFA(S)[S])

o

non-existence of Efimov space is not known to be consistent
b = c is pretty weak and s < ¢ is easy; NCF?

metrizability of compact small diagonal space is possibly ZFC?
spectrum of sequential order is unknown above 2

compact + t = w may imply exists G,,-point

© 000

must a compact space contain at least one of a converging w
or wy sequence.
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@ Moore-Mrowka is independent but its status in other models
is interesting (e.g. Todorcevic established in PFA(S)[S])

non-existence of Efimov space is not known to be consistent
b = c is pretty weak and s < ¢ is easy; NCF?

o

metrizability of compact small diagonal space is possibly ZFC?
spectrum of sequential order is unknown above 2

compact + t = w may imply exists G,,-point

© 000

must a compact space contain at least one of a converging w
or wy sequence.

©

Scarborough-Stone: is the product of (all) sequentially
compact spaces still countably compact
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