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introduction

I want to discuss some of the set-theory arising in the investigation
of the extent to which converging sequences control topological
behavior in compact spaces.

I will discuss historical background in order to motivate some of
my own newish - new results. I’ll try to present it to show them as
natural questions and also end with a brief list of unsolved
attractive problems.

Converging sequences in this talk will come in two flavors

ω+1 means converging sequence with limit
ω1+1 means co-countably converging

Alan Dow the set-theory of compact spaces



Basic situation
T-algebras

introduction

I want to discuss some of the set-theory arising in the investigation
of the extent to which converging sequences control topological
behavior in compact spaces.

I will discuss historical background in order to motivate some of
my own newish - new results. I’ll try to present it to show them as
natural questions and also end with a brief list of unsolved
attractive problems.

Converging sequences in this talk will come in two flavors

ω+1 means converging sequence with limit
ω1+1 means co-countably converging

Alan Dow the set-theory of compact spaces



Basic situation
T-algebras

introduction

I want to discuss some of the set-theory arising in the investigation
of the extent to which converging sequences control topological
behavior in compact spaces.

I will discuss historical background in order to motivate some of
my own newish - new results. I’ll try to present it to show them as
natural questions and also end with a brief list of unsolved
attractive problems.

Converging sequences in this talk will come in two flavors

ω+1 means converging sequence with limit
ω1+1 means co-countably converging

Alan Dow the set-theory of compact spaces



Basic situation
T-algebras

Gδ-points, Frechet

building up more complicated spaces
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converging sequences but not Frechet
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βN ⊃ ω1+1-sequenceω + 1 6⊂

∃b1N 6⊃ βω
completely
divergent N
b1N ⊃ ω + 1

∃b2N 6⊃ ω + 1
[Haydon]

N ⊃ J → J 6≈ βN

but b2N ⊃ βω

??? t = ω?

note: in βω1 , ω1 is completely divergent, but βω1 ⊃ (ω1+1)

Cantor set blow-up fails
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countable tightness, ie. t = ω

Fact

a space is sequential if A =
⋃
α∈ω1

A(α) – iteratively add limits
of converging sequences

a space is t = ω if A =
⋃
{B : B ∈ [A]ω}

[Sapirovskii] compact t > ω iff X contains a free ω1-sequence

[Juhasz-Szentmiklossy] iff X contains a converging free
ω1-sequence

so, oddly, containing a converging ω1-sequence is a largeness
property (recall βN ⊃ ω1+1)
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dichotomies and questions

Efimov

does each compact space contain one of ω+1 or βω?

Juhasz

does each compact space contain one of ω+1 or ω1+1?

Juhasz

do t = ω compact spaces contain a Gδ-point or a Gω1-point?

celebrated Moore-Mrowka

Is every compact space of countable tightness also sequential?
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Say that an Efimov space is a compact space containing neither
ω + 1 nor βω.

Say that a Moore-Mrowka space is a compact t = ω space which
is not sequential.
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Čech-Pospǐsil labelled trees – an object needing analysis

For a tree T ⊂ 2<c, we may attach a clopen set at , we will
(arrange and) let Ft =

⋂
s≤t as 6= ∅, and we might pick a point

xt ∈ Ft . We extend t if |Ft | > 1; in addition {at0, at1} will be
disjoint (and sometimes a partition).
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Ft

as

xt ∈

Ft is a G|t|-set
if |Ft | = 1, we have a G|t|-point
else |X | ≥ 2ω1 if no Gδ-points

Sapirovskii variant: ati ∩ {xs : s ⊂ t} = ∅
if succeed, X has unctble tightness
if fail, X has a Gδ of weight c

i.e. a point with character ≤c

CH implies every compact t = ω space has a G≤ω1-point.
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PFA and Moore-Mrowka

PFA implies that if the space X is not sequential, then there is a
branch with a subsequence {xtα : α ∈ Λ ⊂ ω1} violating
Sapirovskii’s condition. Also t = ω implies that there must be
Gδ-points. Simply, if X is not sequential, then forcing with the
proper poset c<ω1 will shoot a branch avoiding all points of X . X̌
is not compact (uses MA), but it is countably compact.
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Ft

as

xt ∈

o

the method of countable elementary submodels
as side conditions adds free sequence
(also shown from PFA(S)[S] by Todorcevic)

this shows we can’t control this tree
(general “Čech-Pospǐsil” tree)

but we have to.

remark: It may not be fully branching
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Basic situation
T-algebras

Fedorchuk / Ostaszewski embrace the tree

Definition (Koszmider / Koppelberg / Fedorchuk)

A T-algebra will be a Boolean algebra with a generating set
indexed by a binary tree T , i.e. {at : t ∈ T} and at0, at1 are
complements. And more properties in a minute.

Theorem (1972)

♦ implies there is a Moore-Mrowka space not containing ω+1.

Theorem (197?)

CH implies there is an Efimov space.

Proof.

Build a suitable T-algebra and take the Stone space.
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Basic situation
T-algebras

T-algebras

T-algebras ; their Stone spaces do not contain βN

For a tree T , let bT denote T together with all its maximal
branches. A family {at : t ∈ T} is a T -generating family if

1 for t on a non-successor level, at = 1

2 for each non-maximal t ∈ T , at0, at1 are complements

3 for all b ∈ bT , the family {at : t ⊂ b} generates an ultrafilter
over the algebra generated by {as : ¬(b ⊆ s)}.

for each b ∈ bT , {at : t ≤ b} generates a superatomic Boolean
algebra; and every superatomic Boolean algebra can be expressed
as a maximal branch in a T -algebra
the key is that at can not “split Fs” if s ⊥ t
the Stone space is in natural one-to-one correspondence with the
collection of maximal branches
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Basic situation
T-algebras

T-algebras

Efimov and Moore-Mrowka status

are there T-algebras 6⊃ ω+1? (countably infinite quotient)

♦ implies an Efimov T-algebra exists

PFA implies if exist then ⊃ ω1+1

They exist from CH but CON with CH must be t > ω

CH and MA are not known to resolve Moore-Mrowka

Efimov T-algebra can not contain ω+1× ω1+1
contrast with (2)

New result: b = c implies an Efimov T-algebra exists (joint
with Shelah) ; Not previously known even for just Efimov
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Basic situation
T-algebras

T-algebras

a detour then back to Moore-Mrowka

Definition

A space X is initially ω1-compact if every set of size ≤ω1 has a
complete accumulation point.

Question

Does initially ω1-compact +

{
t = ω
χ = ω

imply

{
compact
cardinality ≤c ?

Theorem (CH, PFA, Cohen)

initially ω1-compact t = ω spaces are compact, and so,
χ = ω ones (and even separable t = ω under PFA) have cardinality
at most c.

[ZFC] Any compactification of a non-compact initially ω1-compact
t = ω space is a Moore-Mrowka space.
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Basic situation
T-algebras

T-algebras

initially ω1-compact in ZFC and MA

the story here starts with Baumgartner-Shelah, inventing the
∆-function in order to produce a ccc poset of finite conditions

Theorem

It is consistent to have a (chain) T-algebra with all of the ω2 many
scattering levels countable.
(ω1-compact, t = ω but not countably compact)

Luckily I went to the Velickovic workshop in the Appalachian
set-theory series where he showed

Proposition

Mixed cardinality elementary submodels as side conditions give a
proper poset of finite conditions that add the Baumgartner-Shelah
example.
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Basic situation
T-algebras

T-algebras

initially ω1-compact in ZFC and MA

Much earlier, Rabus brilliantly modified Baumgartner-Shelah to
obtain

Theorem

It is consistent to have initially ω1-compact t = ω space which
is not compact.

Using generically blowing up points to Cantor sets
(Juhasz-Koszmider-Soukup) it can be made first countable

These T-algebra chain examples are intrinsically of size c and MA
certainly does not hold. Can the Neeman method be used?
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Basic situation
T-algebras

T-algebras

Neeman’s method and a new example

Let T ⊂ 2<ω2 , and use Velickovic approach of mixed cardinality
finite ε-chains of elementary submodels to define a poset PT

adding a Rabus style T-algebra

Conditions

A condition p consists of (Hp, {apt : t ∈ Hp},Mp)

1 Hp is an adequately closed finite subset of T

2 t ∈ apt is a subset of Hp, {apt : t ∈ Hp} generates an Hp-algeba

3 Mp is an ε-chain of countable and internally approachable
elementary submodels of (H(ω2), a well order).

4 {at : t ∈ M ∩ Hp} generates a subalgebra ⊂ M for each
M ∈Mp
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Basic situation
T-algebras

T-algebras

Neeman’s method and a new example

Let T ⊂ 2<ω2 , and use Velickovic approach of mixed cardinality
finite ε-chains of elementary submodels to define a poset PT

adding a Rabus style T-algebra

Conditions

A condition p consists of (Hp, {apt : t ∈ Hp},Mp)

1 Hp is an adequately closed finite subset of T

2 t ∈ apt is a subset of Hp, {apt : t ∈ Hp} generates an Hp-algeba

3 Mp is an ε-chain of countable and internally approachable
elementary submodels of (H(ω2), a well order).

4 {at : t ∈ M ∩ Hp} generates a subalgebra ⊂ M for each
M ∈Mp

Alan Dow the set-theory of compact spaces



Basic situation
T-algebras

T-algebras

Neeman’s method and a new example

Let T ⊂ 2<ω2 , and use Velickovic approach of mixed cardinality
finite ε-chains of elementary submodels to define a poset PT

adding a Rabus style T-algebra

Conditions

A condition p consists of (Hp, {apt : t ∈ Hp},Mp)

1 Hp is an adequately closed finite subset of T

2 t ∈ apt is a subset of Hp, {apt : t ∈ Hp} generates an Hp-algeba

3 Mp is an ε-chain of countable and internally approachable
elementary submodels of (H(ω2), a well order).

4 {at : t ∈ M ∩ Hp} generates a subalgebra ⊂ M for each
M ∈Mp

Alan Dow the set-theory of compact spaces



Basic situation
T-algebras

T-algebras

Neeman’s method and a new example

Let T ⊂ 2<ω2 , and use Velickovic approach of mixed cardinality
finite ε-chains of elementary submodels to define a poset PT

adding a Rabus style T-algebra

Conditions

A condition p consists of (Hp, {apt : t ∈ Hp},Mp)

1 Hp is an adequately closed finite subset of T

2 t ∈ apt is a subset of Hp, {apt : t ∈ Hp} generates an Hp-algeba

3 Mp is an ε-chain of countable and internally approachable
elementary submodels of (H(ω2), a well order).

4 {at : t ∈ M ∩ Hp} generates a subalgebra ⊂ M for each
M ∈Mp

Alan Dow the set-theory of compact spaces



Basic situation
T-algebras

T-algebras

Neeman’s method and a new example

Let T ⊂ 2<ω2 , and use Velickovic approach of mixed cardinality
finite ε-chains of elementary submodels to define a poset PT

adding a Rabus style T-algebra

Conditions

A condition p consists of (Hp, {apt : t ∈ Hp},Mp)

1 Hp is an adequately closed finite subset of T

2 t ∈ apt is a subset of Hp, {apt : t ∈ Hp} generates an Hp-algeba

3 Mp is an ε-chain of countable and internally approachable
elementary submodels of (H(ω2), a well order).

4 {at : t ∈ M ∩ Hp} generates a subalgebra ⊂ M for each
M ∈Mp

Alan Dow the set-theory of compact spaces



Basic situation
T-algebras

T-algebras

Theorem

The proper poset P = PT satisfies

1 adds no new uncountable cofinality branches to T

2 branches with countable cofinality are points of χ = ω

3 cofinality ω2 branches are ω and ω1 inaccessible

4 all this is preserved by FS small ccc forcing (Souslin-free) so
we can get MA to hold

The set X of all ultrafilters from branches with countable cofinality
is first countable and dense in S(BT ). If T has no cofinality
ω1-branches, X is initially ω1-compact.
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T-algebras

answer Arhangelskii’s question in negative

but what does this give us?
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init ω1-compact

1st ctble, |X | = c

now card. = |bT |

bT ∩ 2<ω2

* * * * * * * * * *

A
A
A
A

(x , 1)

• • • • • • • • • •
V ∩ 2ω2 × {1} are doubled and isolated

V ∩ 2ω2 × {0} is removed

how to get only points of χ > ω1?
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T-algebras

another application segues into my next and final topic

Theorem

If we take T to be an ℵ2-Souslin tree with no branches of
cofinality ω1, then X itself is first-countable and compact, but in
the forcing extension by T , it ceases to be Lindelöf.

and (even before the forcing) has ℵ1-sized sets not contained in an
ℵ1-sized Lindelof subset
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T-algebras

Husek question about small diagonal

A compact space X has a small diagonal if the quotient space
X 2/∆X contains no converging ω1-sequence.

Theorem

In many models (PFA, CH, Cohen) each compact space with a
small diagonal is metrizable. Is this true in ZFC?

Theorem

If X is compact with small diagonal, then
metrizable iff the Lindelof sets are stationary in [X ]ω1

Questions

We do not know if X contains ω+1, points of countable character,
has cardinality at most c, and all other metric type properties.
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T-algebras

models for compact small diagonal is metrizable

A powerful consequence of not containing any converging
ω1-sequences emerges

Theorem

In any model obtained by FS iteration of small σ-linked posets a
compact space X contains no converging ω1-sequences iff
it is first-countable and Lindelof sets are stationary in [X ]ℵ1 .

Lemma

A key step was from a Junqueira-Koszmider paper showing that
forcing with such posets preserve that compact spaces stay
Lindelof in the extension.

It follows that compact spaces of small diagonal are metrizable in
such a model.
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T-algebras

1 Moore-Mrowka is independent but its status in other models
is interesting (e.g. Todorcevic established in PFA(S)[S])

2 non-existence of Efimov space is not known to be consistent
b = c is pretty weak and s < c is easy; NCF?

3 metrizability of compact small diagonal space is possibly ZFC?

4 spectrum of sequential order is unknown above 2

5 compact + t = ω may imply exists Gω1-point

6 must a compact space contain at least one of a converging ω
or ω1 sequence.

7 Scarborough-Stone: is the product of (all) sequentially
compact spaces still countably compact
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