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Introduction

Our goal is to describe a few theorems about small cardinals like ω, ω1,
ω2, whose proofs are specific to these cardinals.

Then we will show how they can be generalized to larger cardinals using a
common method.

Our theorems concern ideals. I is an ideal on X if it is a collection of
subsets of X closed under taking subsets and pairwise unions.

We will only consider ideals which are proper and uniform, meaning
I 6= P(X ), and if A ⊆ X and |A| < |X |, then A ∈ I .
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Notions and Notation

Let I ⊆ P(X ) be an ideal.

I ∗ = {X \ A : A ∈ I}, the collection of “I -measure-one sets.”

I is prime if I ∗ is an ultrafilter.

I+ = P(X ) \ I , the collection of “I -positive sets.”

For A,B ⊆ X , we say A ≤I B iff A \ B ∈ I .

P(X )/I is the preorder (I+,≤I ).

I �A is the smallest ideal containing I ∪ {X \ A}.
I is κ-complete if it is closed under unions of size < κ.

I is κ-saturated if every antichain in P(X )/I has size < κ.

I is κ-dense if P(X )/I has a dense subset of size ≤ κ.
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Gitik-Shelah Theorem

Theorem (Gitik-Shelah)

There is no countably complete, ω-dense, nowhere-prime ideal.

Proof Overview:

Reduce to the case of a cardinal κ carrying a κ-complete, ω-dense,
nowhere-prime ideal.

Adding a Cohen real g produces an elementary embedding
j : V → M ⊆ V [g ], where M is a well-founded ultrapower of V .

There is a 1-1 f : κ→ R which is forced to represent g in the
ultrapower.

For each α < κ+, there is a Cohen name τα forced to be j(f )(α).
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Gitik-Shelah Theorem

Cohen Forcing Fact

Each Cohen term τ canonically codes a Borel function B(τ) : R→ R such
that p 
 τ1 6= τ2 iff {x : B(τ1)(x) = B(τ2)(x)} ∩ [p] is meager.

A contradiction is derived by showing that there are α < β < κ+ such that
B(τα) and B(τβ) agree on a nonmeager set. �
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Woodin’s Theorem

Theorem (Woodin)

If there is a countably complete, ω1-dense ideal on ω2, then CH holds.

Proof Overview:

Let I be as hypothesized. Forcing with P(ω2)/I gives a generic
ultrafilter H on ω2, and also a generic ultrafilter G on ω1. We get
well-founded ultrapowers M ∼= V ω2/H and N ∼= V ω1/G .

M,N contain all the reals of V [H],V [G ] respectively.

We get a system of embeddings:

V
j

- M ⊆ V [H]

N

i

?

k

-

⊆ V [G ]
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Woodin’s Theorem

New reals are added between V [G ] and V [H] if and only if CH fails.

V N M
i k

j

ω

ω1

ω2

ω3

ω4

Monroe Eskew (UCI) Generalization by Collapse March 31, 2012 7 / 19



Woodin’s Theorem

Since G collapses ω1, and P(ω2)/I has a a dense subset of size ω1,
the factor forcing to get H from G is at most countable. Therefore, it
is equivalent to Cohen forcing if CH fails and trivial if CH holds.

Therefore, if CH fails, Cohen forcing is able to create the embedding
k . Following a similar strategy to the Gitik-Shelah argument, we
ultimately arrive at the same contradiction: two Cohen names for
distinct reals, such that their canonical functions agree on a
nonmeager set. �
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Generalization

The proofs of both theorems use facts specific to ω, R, and Cohen forcing,
so it seems impossible to generalize the arguments in a straightforward
way. But the following observation turns out to be useful.

Preservation Lemma

Suppose κ is a regular cardinal and I is a κ-complete ideal on a set X . Let
P be any notion of forcing, and let G be P-generic. In V [G ], let Ī be the
ideal generated by I :

Ī = {A ⊆ X : (∃B ∈ I )A ⊆ B}

1 If P is κ-c.c., then Ī is κ-complete in V [G ].

2 If P is κ-c.c. and I is normal, then Ī is normal in V [G ].

3 If |P| < κ, then for every Ī -positive set A, there is an I -positive set
B ∈ V such that B ⊆ A.
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Generalization

Corollary (Gitik-Shelah)

If I is κ-complete, δ-dense, nowhere-prime ideal, then κ ≤ δ.

Proof: Assume the contrary. Let P = Col(ω, δ). Then in V P, Ī is
κ-complete and ω-dense, contradicting the earlier theorem. �

Note: Gitik and Shelah derive this as a corollary to a more general
theorem with a much longer proof. The preservation lemma is used in the
proof, but they choose not to show how it gives the above short argument.
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Generalization

Question (Foreman)

Does the existence of an ω2-complete, ω2-dense ideal on ω3 imply
2ω1 = ω2?

Answer:

Corollary (E.)

If there is a κ+-complete, κ+-dense ideal on κ++, then 2κ = κ+.

Proof: Let I be a κ+-complete, κ+-dense ideal on κ++, let P = Col(ω, κ),
and let G be P-generic. Then in V [G ], κ+ = ω1 and κ++ = ω2.

If there is f ∈ V which is a surjection from PV (κ) onto κ++, then this f
witnesses the failure of CH in V [G ]. But by the preservation lemma, Ī is
ω1-complete and ω1-dense, so by Woodin’s theorem, V [G ] � CH. �
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Ulam’s Measure Problem

Ulam was the first to show that ω1 is not a measurable cardinal, i.e. there
is no countably complete ideal I on ω1 such I ∪ I ∗ = P(ω1).

Alaoglu and Erdös extended Ulam’s result to show that if {In : n ∈ ω} is a
set of countably complete ideals on ω1,

⋃
n∈ω In ∪ I ∗n 6= P(ω1). Ulam asked

whether ω1 many ideals can suffice.

It is easy to see that Ulam’s problem has an affirmative solution if there is
an ω1-complete, ω1-dense ideal on ω1. What about the other direction?

Theorem (Taylor)

There is an ω1-complete, ω1-dense ideal on ω1 iff there is a set
{Iα : α ∈ ω1} of normal ideals on ω1 such that

⋃
α∈ω1

Iα ∪ I ∗α = P(ω1).
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General Measure Problem

Let’s use the following abbreviations:

d(X , κ) is the least cardinal δ such that there is a κ-complete,
δ-dense, nowhere-prime ideal on X .

m(X , κ) is the least cardinal δ such that there is a set {Iα : α < δ} of
κ-complete, nowhere-prime ideals on X , where P(X ) =

⋃
α<δ Iα ∪ I ∗α.

nm(X , κ) means the same except with the requirement that the ideals
be normal.

Related Results of Taylor

1 d(ω1, ω1) = ω1 ⇔ nm(ω1, ω1) = ω1.

2 (∀κ)m(κ+, κ+) > κ.

3 (∀X )d(X , ω1) = ω ⇔ m(X , ω1) = ω.

The Gitik-Shelah theorem allows us to strengthen the last one.
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General Measure Problem

Related to these ideas is the following:

Definition

An ideal I has the κ-refinement property, RP(κ), if every for sequence
〈Aα : α < κ〉 ⊆ I+, there is a sequence 〈Bα : α < κ〉 ⊆ I+ which is
pairwise disjoint, and Bα ⊆ Aα for all α.

It is easy to see that for all regular κ,
d(κ, κ) ≤ κ⇒ nm(κ, κ) ≤ κ⇒ m(κ, κ) ≤ κ. Taylor also proved:

Theorem (Taylor)

nm(κ, κ) ≤ κ⇒ there is a normal ideal on κ that has ¬RP(κ).
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General Measure Problem

By combining his results with the following, he was able to prove his
theorem about ω1:

Theorem (Baumgartner-Hajnal-Máté)

If I is a normal ideal on ω1 which is nowhere ω1-dense, then I has RP(ω1).

The proof of this theorem is specific to ω1. It takes an ω × ω1 Ulam
matrix and, using the assumption of nowhere ω1-density, refines the matrix
one row at a time to a pairwise disjoint matrix. It is not clear how the
proof could be modified to go through limit stages.

However, using our collapse technique, we can get the following:

Theorem (E.)

Suppose 2κ = κ+. Then d(κ+, κ+) = κ+ ⇔ nm(κ+, κ+) = κ+.
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General Measure Problem

Lemma (E.)

Suppose 2κ = κ+. If there is a set {Iα : α < κ+} of normal, κ++-saturated
ideals on κ+ such that P(κ+) =

⋃
α<κ+ Iα ∪ I ∗α, then d(κ+, κ+) = κ+.

Proof Overview:

If such a collection of ideals exists, Taylor’s theorem gives a normal
ideal I on κ+ for which RP(κ+) fails. Call a counterexample to the
refinement property an “unrefinable sequence.”

Using the cardinal arithmetic assumption, we can build an unrefinable
sequence which is guaranteed to remain unrefinable after forcing with
Col(ω, κ).

Use the BHM theorem in the extension to get a set A ∈ V such that
Ī �A is ω1-dense in V [G ]. This property can be pulled back to V . �
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General Measure Problem

Now for the main theorem, assume 2κ = κ+ and d(κ+, κ+) > κ+. Let
{Iα : α < κ+} be any set of normal ideals on κ+. Let S = {α : Iα is
nowhere κ++-saturated}. For each α /∈ S , let Aα be such that Iα �Aα is
κ++-saturated.

Using another lemma of Taylor, we are able to find three sets X0,X1,Y
which are pairwise disjoint, Iα-positive for all α ∈ S , and such that Y is
(Iβ �Aβ)-positive for all β /∈ S .

By the assumption, my lemma implies that Y can be split into disjoint
Y0,Y1 which are both (Iβ �Aβ)-positive for every β /∈ S .

Then the sets X0 ∪ Y0, X1 ∪ Y1 witness that
⋃
α<κ+ Iα ∪ I ∗α 6= P(κ+). �
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Further Directions

Another interesting theorem that can be shown with these techniques is:

Theorem (E.)

Suppose λ is a singular strong limit cardinal, and 2λ < 2λ
+

. Then
d(λ+, λ+) > λ+.

A direction for further research is to elaborate on the relationships between
d(X , κ), m(X , κ), and cardinal arithmetic. It will be interesting to see
what else can be established in ZFC, as well as showing what is
independent.

Thank You
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