Light Logics for Polynomial Time Computations

Marco Gaboardi
University of Pennsylvania
Universita di Bologna
Inria Focus Team

Light Logics for Polynomial Time Computations April 3th2012-1/33

Outline

Implicit Computational
Complexity

FPTIME

— T

Boundedness ‘ Stratification

\ /

Computation ‘

Light Logics for Polynomia Time Computations April 3th2012 -2/ 33

Implicit Computational
Complexity

Light Logics for Polynomia Time Computations April 3th2012 -3/ 33

|mplicit Computational Complexity: Motivations

O |1CC ams at describing complexity classes without:

— explicit reference to a specific machine model
— without an explicit cost bound

Light Logics for Polynomia Time Computations April 3th2012 -4/ 33

|mplicit Computational Complexity: Motivations

O |1CC ams at describing complexity classes without:

— explicit reference to a specific machine model
— without an explicit cost bound

O It generally borrows techniques from Mathematical Logic :

— Recursion Theory, FPTIME = Predicative Recursion on Notation
— Structural Proof Theory, FPTIME = Bounded/Light Linear Logic
— Mode Theory, FPTIME = PR Functions over Finite Structures

Light Logics for Polynomia Time Computations April 3th2012 -4/ 33

|mplicit Computational Complexity: Motivations

O |1CC ams at describing complexity classes without:

— explicit reference to a specific machine model
— without an explicit cost bound

O It generally borrows techniques from Mathematical Logic :

— Recursion Theory, FPTIME = Predicative Recursion on Notation
— Structural Proof Theory, FPTIME = Bounded/Light Linear Logic
— Mode Theory, FPTIME = PR Functions over Finite Structures

O Our approach:
Proofs as
Programs

Structural Proof |) Functional
Theory Programming

Light Logics for Polynomia Time Computations April 3th2012 -4/ 33

CharacterizingtheclassFPTIME

FPTIME isthe class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

A Logic £ characterizes FPTIME if:

O Soundness. Every proof/program in £ can be evaluated in polynomial
time.

0 Extensional Completeness: Every TM computing a function in
FPTIME can be simulated by means of a proof/program in L.

Light Logics for Polynomia Time Computations April 3th2012 -5/ 33

CharacterizingtheclassFPTIME

Extensional Completeness does not say anything about the expressivity of
L. For instance:

- “FPTIME™ ~ _
L, proofs

Light Logics for Polynomia Time Computations April 3th2012 -5/ 33

CharacterizingtheclassFPTIME

Extensional Completeness does not say anything about the expressivity of
L. For instance:

- “FPTIME™ ~ _
L, proofs

| ntensional Completeness:
The Logic £ captures all the FPTIME proofsof ;.

Light Logics for Polynomia Time Computations April 3th2012 -5/ 33

CharacterizingtheclassFPTIME

Extensional Completeness does not say anything about the expressivity of
L. For instance:

- “FPTIME™ ~ _
L, proofs

|ntensional Completeness. (Usually undecidable!)
The Logic £ captures all the FPTIME proofs of ;.

Light Logics for Polynomia Time Computations April 3th2012 -5/ 33

FPTIME

O FPTIME isthe class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

Light Logics for Polynomia Time Computations April 3th2012 -6/ 33

FPTIME

O FPTIME isthe class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

O Intuitively, FPTIME isthe class of programs obtained by permitting
arbitrary compositions of polynomial iterations.

r(z)oq(z) =p(z) plz)o p({), o-op(x) = e(x)

x-times

Light Logics for Polynomia Time Computations April 3th2012 -6/ 33

FPTIME

O FPTIME isthe class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

O Intuitively, FPTIME isthe class of programs obtained by permitting
arbitrary compositions of polynomial iterations.

r(z)oq(z) =p(xr) plx)op(x)o-op(x)=ec(z)

\ . J

~

x-times

O Recurrent idea: Allows definitions by iteration of polynomials but
forbids dangerous iterations of polynomials.

Light Logics for Polynomia Time Computations April 3th2012 -6/ 33

Road-map

Extensional | ntensional . -
System Soundness Completeness Completeness Decidability
Bounded
Recursion X X X
on Notation
Predicative
Recursion X X X
on Notation
Light
Affine Logic X X X
Bounded X X ~
Linear Logic

Light Logics for Polynomia Time Computations April 3th2012 -7/ 33

First approach: Bounded Recursion on notation

Thefirst implicit characterization of FPTIME [Cobham65] uses BRN:

f(e)
f(0z,9)
f(1z,9)

f(z,9)

with a smash function x#y = 10 - - - 0 and few other basic functions.
N——

j]-[y]

]
>
(@) Ve
’QS
<
N
8
Iy
N——"
N——"

A
?TA
X\
}%
&

Light Logics for Polynomia Time Computations April 3th2012 -8/ 33

First approach: Bounded Recursion on notation

Thefirst implicit characterization of FPTIME [Cobham65] uses BRN:

fle,9)
f(0z, 7))
f(1z,y)
flz,)

A

with a smash function x#y = 10 - - - 0 and few other basic functions.

Pros:

+ No explicit machine model.

+ Very expressive.
Cons:

- The bound is not really implicit.

j]-[y]

- The bound is difficult to check (undecidable!).

Light Logics for Polynomia Time Computations

April 3th 2012 -8/ 33

Second approach: Predicative Recursion on notation

Another approach is by using PRN [Bellantoni& Cook91,L eivant91]:

fle,Z59) = g(Z59)
fOx,Z59) = ho(x, 259, f(2,25%))
fAz,Z259) = hi(z, 257 (,5;5))

Every function f(z ; /) has normal arguments ' and safe arguments 4.
Soundness. the result of an iteration cannot be a recurrence argument.

Light Logics for Polynomia Time Computations April 3th2012 -9/ 33

Second approach: Predicative Recursion on notation

Another approach is by using PRN [Bellantoni& Cook91,L eivant91]:

fle,Z59) = g(Z59)
fOx,Z59) = ho(x, 259, f(2,25%))
fAz,Z259) = hi(z, 257 (,5;5))

Every function f(z ; /) has normal arguments ' and safe arguments 4.
Soundness. the result of an iteration cannot be a recurrence argument.

Pros:

+ Thebound is no more explicit.
+ Simple syntactic criterion.

Cons:

- Poor expressivity.
- Inherently first order.

Light Logics for Polynomia Time Computations April 3th2012 -9/ 33

Stratification

Light Logics for Polynomia Time Computations April 3th2012-10/ 33

Paradox asthe wor st complexity...

Through the proofs-as-programs correspondence Intuitionistic Logic with
type fixpoints corresponds to a system of recursive types.

I'FN:A Ax:AFM: B

t
x: AFx: A (Az) I'yAFMx/N|B (cut)

Ix: AFM: B x¢ FV(I) (= R) I'-N:A x:BAFM:C (=)
I'-XxM: A= B y: A= B,I',AFMyN/x]:C
FM: A I'x:B,x:BFM: A
FaXIBl_MIA(w) I''x:BFM: A ()

''FM:A A=B , 'x:AFM:C A=B ,
I'-M: B (= R) I'x:BFM:C (=1)

Light Logics for Polynomia Time Computations April 3th2012-11/33

Non termination i1sthe wor st use of resource

For what followsit isinstructive to look how (Ax.xx)Ax.xx can be typed
using thefixpoint A = A = L:

x:AFx:A x:1lbFx: L

x:AFx: A XIJ_I—XIJ_<:>L) x: Ax: A= 1L Fzxx: J_((ZZ)L)
X:A,X:A:>J_|—XX:J_(:L) x:Ax: AF xx: J_()
X:f?};:I—AXI;}'QIL (€) I—X)\X?{XI_ le{:j_J_ (= 1)
: : (= R) (= R)

Fxxx: A= L
F (Ax.xx)Ax.xx @ L

I—AX.XX.A()

Remark: contraction is necessary.

Light Logics for Polynomia Time Computations April 3th2012-12/ 33

Intuitionistic Linear Logic with fixpoints: ILL,

I'EFN:A A,X:AI—M:B(£)
T, A+ MN/x|: B o

x:AFx: A (Az)

I'x: AFM: B x¢ FV(I) R 'FN:A X:B,AI—M:C<
'FXxM:A—B (= B) y:A—o B,I', AFMyN/x|]:C

I'-FM: A A=2RB
I'-M: B

I'x:AFM:C A=BHB _7
I'x:BFM:C (=1)

(= R)

!FI—M:A<) F,X:BI—M:A(d
rruia® Txigru.a @

FFM: A (w) F,X:!B,X:!BI—M:A()
I'x:!!BFM: A v I'x:!!BFM: A ¢

Light Logics for Polynomia Time Computations April 3th2012 - 13/ 33

Non termination in ILL ,

Obviously (Ax.xx)Ax.xx istypablein ILL , by means of the type fixpoint
A =!A — 1 (whichistheusual trandationof A = A = 1).

x:JAFx:1A X:J_I—X:J_(
x1!A, x0 A — L Fxx: L

(=1)

x:1AFx:1A X:J_I—X:J_(_OL) xIA,x: Ak xx: L
X!A,X:!A—OJ_I—XX:J_<:L) X!A,X:!AI—XX:J_(d)
XiA,X:AI—XX:J_M) 2 JAF %% - | (<—C<)>R)
x!A,x 1AFxx: L (0 - \x.xx 1A —o | (= R)
xJAFxx: L (—o R) I—)\X.XX:A(p>
F A Ax.xx JA — | - \x.xx 1A (cut)

- (Ax.xx)Ax.xx @ L

Remark: contraction, promotion and dereliction are necessary.

Light Logics for Polynomia Time Computations April 3th2012 -14/ 33

TowardsLight Logics

Theideaof Light Logicsisto limit the power of the structural rules.
O Firstidea: forbid contraction.

+ Consistent Set theory with afull comprehension scheme.
- Too weak for polynomial time.

Light Logics for Polynomia Time Computations April 3th2012 -15/33

TowardsLight Logics

Theideaof Light Logicsisto limit the power of the structural rules.
O Firstidea: forbid contraction.

+ Consistent Set theory with afull comprehension scheme.
- Too weak for polynomial time.

0 Second idea: control the other structural rules:

1) Proof Stratification.
1) Avoiding the monoidalness of !.

Light Logics for Polynomia Time Computations April 3th2012 -15/33

Stratification

We can think to the promotion rule as abox:

T-M:A

T"-M:1A

and we say depth of arule, the number of boxes containing it.

Light Logics for Polynomia Time Computations

April 3th 2012 — 16/ 33

Stratification

We can think to the promotion rule as abox:

T-M:A
T-MIA

and we say depth of arule, the number of boxes containing it.

Non-stratification of a proof in Linear Logic.
The depth of any rule can change during the cut elimination.

Light Logics for Polynomia Time Computations April 3th2012-16/ 33

Stratification

If we remove the principles:
1A —!lA 1A — A

we have instead:

Stratification: The depth of any rule cannot change during the cut
elimination.

Light Logics for Polynomia Time Computations April 3th2012-16/ 33

Stratification

If we remove the principles:
1A —!lA 1A — A

we have instead:

Stratification: The depth of any rule cannot change during the cut
elimination.

S0, we can consider only the rules

re A IA'ATF B
(O)

T A Arrn V)

Light Logics for Polynomia Time Computations April 3th2012-16/ 33

Reduction at depth i

A cut elimination step at depth i:

1) duplicate part of the proof at depth: + 1,
1) decrease the number of rules at depth ;,
111) does not affect the depths j < 4,
IV) does not increase the global depth.

Light Logics for Polynomia Time Computations April 3th2012-17/33

Reduction at depth i

A cut elimination step at depth 7 can only:

1) duplicate part of the proof at depth + 1,
1) decrease the number of rules at depth ;,
111) does not affect the depths ; < 4,
IV) does not increase the global depth.

[EA| AMMEB o
CHA| AJAFB
T.AF B (cut)

T A

THA| A1AAF B
'~ A y <41 (cut)
T A TAAFB

!F,!F,AI—B(V) (cut)

T.AF B

This can be iterated to obtain an exponential at each fixed depth ;.

Light Logics for Polynomia Time Computations

April 3th 2012 - 17/ 33

Reduction at depth i

A cut elimination step at depth 7 can only:

1) duplicate part of the proof at depth: + 1,
1) decrease the number of rules at depth i,
111) does not affect the depths j < 4,
IV) does not increase the global depth.

T'A-C AFA CXFB AFA TARC
TFA—-C AA—-CXFB ATFC 4 cnEB
T AYED (cut) AT SFB (cut)

Light Logics for Polynomia Time Computations April 3th2012-17/33

Reduction at depth i

A cut elimination step at depth 7 can only:

1) duplicate part of the proof at depth: + 1,
1) decrease the number of rules at depth ;,
111) does not affect the depths 5 < «,
IV) does not increase the global depth.

T'AFC AFA CXFB AF A F,AI—C(t)
TFA -C AA-CYXFB ATFC 4 cxrB
T ASFD (cut) |, ATSFB (cut)

Light Logics for Polynomia Time Computations April 3th2012-17/33

Reduction at depth i

A cut elimination step at depth 7 can only:

1) duplicate part of the proof at depth: + 1,
1) decrease the number of rules at depth ;,
111) does not affect the depths ; < 4,
IV) does not increase the global depth.

Because of the stratification!

Light Logics for Polynomia Time Computations April 3th2012-17/33

Stratified Reduction

We can perform a depth-by-depth reduction:

1o 1T}o 1T}o 1T}o 1T}o
I, | —¢ oIy pJLdt pILdt pILdt
11, 9112 _>>1k 22|H|2 22|H|2 22|H|2
. 9113 9113
T, e 221 s | 92 22
jutp;

2|H|d 22|H|d 22

11, 2Mla 2 2 2

Light Logics for Polynomia Time Computations April 3th2012 - 18/ 33

The exponential blow-up

Most complex element Most complex element reduced

z

= - ..

O The duplication of boxes depending over (more than one) free
variables allows exponential time normalization.

O Limiting this kind of behavior corresponds to reduce the complexity
of the normalization to polynomial time.

Light Logics for Polynomia Time Computations April 3th2012-19/ 33

Light Affine Logic

T A FQ{B}(!A,!A,FI—B() T AR A @
T 1A P ATFB 9 §T.IAF A

Light Logics for Polynomia Time Computations April 3th2012-20/ 33

Light Affine Logic

T A FQ{B}(!A,!A,FI—B() T AR A @
T 1A P ATFB 9 §T.IAF A

Therestriction on the (p) rule corresponds to rule out the law:
1A ®...Q1A, —!A
Therules (d) corresponds to re-introduce a weak version of it:

14, ® ... ®A, —o §A

Light Logics for Polynomia Time Computations April 3th2012-20/ 33

Light Affine Logic

r'-A I C{B)

1A

()

IAVATF B

ATFB 9

0 !-boxes ((p) rules) can be duplicated.
0 8§-boxes ((d) rules) cannot be duplicated

T AFA

TRINETRL

Light Logics for Polynomia Time Computations

April 3th 2012 — 20/ 33

A sketch of LAL soundness- 1

=
(%]

Otmax{pjﬁ‘

O(max{p,r}?)

Thesize|Il|; of depth i < j becomes (at most) [11|; at each round i.

Light Logics for Polynomia Time Computations April 3th2012 -21/33

A sketch of LAL soundness- 2

We can perform a depth-by-depth reduction:

1o 1I]o 1I]o
| =g | ()2 (I1],)?
] ()2 | =1 || ()22
I (|52 ((|T1]3)2)?
i, (I1],)? (1122

ITTo
(|T1]1)?
(([T1]2)%)?

5 || ((CT]5)%)%)*

(((ITTa)*))* | -~

1o

(1T
((11]2)*)*
(((ITT]3)*)*)"

()2 -)?

)2

Light Logics for Polynomia Time Computations

April 3th 2012 -22/ 33

A sketch of LAL soundness- 3

The size of the proof II after the stratified reduction is bounded by:

o()

O disthe maximal depth of aruleinII.

The same method can be used to reason about reduction steps, hence this
gives a bound on the number of 5-normalization steps.

Note: in LAL, datatypes have afixed depth. This means that the depth
depends just on the program part, hence we can work in polynomial time.

Light Logics for Polynomia Time Computations April 3th 2012 - 23/ 33

A sketch of LAL Completeness

O We have addition and multiplication in LAL as:
add : N —o N —o N mult : N — N — §N
So, we can program a polynomial p(x) of degree d as:

p: N — §%N

Light Logics for Polynomia Time Computations April 3th 2012 - 24/ 33

A sketch of LAL Completeness

O We have addition and multiplication in LAL as:
add : N —o N —o N mult : N — N — §N
So, we can program a polynomial p(x) of degree d as:
p:N —o §2dN
O Transition on Turing Machines (TM) can be programmed as:

tr : TM —o TM

Light Logics for Polynomia Time Computations April 3th 2012 - 24/ 33

A sketch of LAL Completeness

O We have addition and multiplication in LAL as:
add : N —o N —o N mult : N — N — §N
So, we can program a polynomial p(x) of degree d as:
p:N —o §2dN
O Transition on Turing Machines (TM) can be programmed as:

tr : TM —o TM

O By some manipulations we can obtain FPTIME Turing machines as:

t: W — §2'W

Light Logics for Polynomia Time Computations April 3th 2012 - 24/ 33

L ack of Expressivity

- “"FPTIME™ ~ _
, L L, proofs N

e QuickSort

Light Logics for Polynomia Time Computations April 3th2012 -25/ 33

Back to Boundedness

Light Logics for Polynomia Time Computations April 3th 2012 -26/ 33

Bounded Linear Logic- 1

One of the earliest examples of a Linear Logic system capturing FPTIME.
Formulas:
Ac=a(pr,...,pn) | ARA|A— A|Va.A| 1,.,A

Theideaisvery ssimple:
s A=A0/x] ® -+ ® Ald/x]

However, the technicalities are increased by the fact that p isin general a
polynomial expression, e.g.

oep A=A/ ® - @ Al — 1/

Thisis however aso it strength.

Light Logics for Polynomia Time Computations April 3th 2012 - 27/ 33

Bounded Linear Logic - 2

Rules:
- B I'VAlx :=0|+ B
(w)

d
Fa !x<wA - B F ':1:<1—|—wA - B ()

Iy A eciAle =p+2|F B (0
Fa !x<p+q+wA - B

@Ay =v(x) + 2], Leg @ Anly = vn(2) + 2] F B
|

p
y<vip)+un A1, ly<on@)tw, An Flacp B (p)

wherev;(z) = > . _. ¢i(2).

Light Logics for Polynomia Time Computations April 3th 2012 - 28/ 33

A source of inspiration: Bounded Linear Logic - 2

Bounded Linear Logic is sound and complete for FPTIME.

Moreover it has some interesting properties.

Light Logics for Polynomia Time Computations April 3th 2012 -29/ 33

A source of inspiration: Bounded Linear Logic - 2

Bounded Linear Logic is sound and complete for FPTIME.

Moreover it has some interesting properties.

Light Logics for Polynomia Time Computations April 3th 2012 -29/ 33

A source of inspiration: Bounded Linear Logic - 2

Bounded Linear Logic is sound and complete for FPTIME.
Moreover it has some interesting properties.

O The“bounding” part can be seen as akind of extra-conditions. Asan
example:

[y A oAl i =p+2|FB p+q<r ()
rL.«,AF B

Light Logics for Polynomia Time Computations April 3th 2012 -29/ 33

Computation

Light Logics for Polynomia Time Computations April 3th2012-30/ 33

Light Type Systems

Stratified Light Logics have been used to design type systems:

Type System ’(: Light Logic ‘

e

Inference Complexity Class ‘

Light Logics for Polynomia Time Computations April 3th2012-31/33

Light Type Systems

Stratified Light Logics have been used to design type systems:

Type System

Light Logic ‘

—

ﬂ

Inference

Complexity Class ‘

This approach is effective, flexible and robust:

O Type Inference usually decidable in polynomial time.

0 Useful to characterize different complexity classes. FPTIME,
ELEMENTARY, FPSPACE, FNPTIME, FEXPTIME.

O With minor modifications they are useful for: higher-order, different
recursion schemes, control operators, multithreding and side effects.

Light Logics for Polynomia Time Computations

April 3th 2012 —31/ 33

Relative Complete Type Systems

Boundedness can be used in adightly different way.

Type System

Type
Inference

Constraint Logic

Side Condition

Resolution

Light Logic ‘

Complexity Class ‘

Light Logics for Polynomia Time Computations

April 3th 2012 —32/ 33

Relative Complete Type Systems

Boundedness can be used in adightly different way.

Type System < . Light Logic ‘
Type
Inference
Side Condition
(Resolution)

Constraint Logic Complexity Class ‘

O Thisapproach can give asystem that is relatively complete with
respect to the solvability of the side conditions by an oracle.

O Thisgives ageneral method to analyze program complexity.

O A similar approach has been used in an interactive framework for the
class LOGSPACE.

Light Logics for Polynomia Time Computations April 3th2012 -32/ 33

THANKS

Light Logics for Polynomia Time Computations April 3th 2012 -33/ 33

