Light Logics for Polynomial Time Computations

<u>Marco Gaboardi</u> University of Pennsylvania Università di Bologna Inria Focus Team

Light Logics for Polynomial Time Computations

April 3th 2012 – 1 / 33

April 3th 2012 – 2 / 33

Implicit Computational Complexity

April 3th 2012 – 3 / 33

Implicit Computational Complexity: Motivations

- □ **ICC** aims at describing complexity classes without:
 - explicit reference to a specific machine model
 - without an explicit cost bound

Implicit Computational Complexity: Motivations

- □ **ICC** aims at describing complexity classes without:
 - explicit reference to a specific machine model
 - without an explicit cost bound
- □ It generally borrows techniques from Mathematical Logic :
 - Recursion Theory, FPTIME = Predicative Recursion on Notation
 - Structural Proof Theory, FPTIME = Bounded/Light Linear Logic
 - Model Theory, FPTIME = PR Functions over Finite Structures

Implicit Computational Complexity: Motivations

- □ **ICC** aims at describing complexity classes without:
 - explicit reference to a specific machine model
 - without an explicit cost bound
- ☐ It generally borrows techniques from Mathematical Logic :
 - Recursion Theory, FPTIME = Predicative Recursion on Notation
 - Structural Proof Theory, FPTIME = Bounded/Light Linear Logic
 - Model Theory, FPTIME = PR Functions over Finite Structures

Our approach:

FPTIME is the class of functions (and not only decision problems) computable in polynomial time by a deterministic Turing Machine.

A Logic \mathcal{L} characterizes FPTIME if:

- □ Soundness: Every proof/program in \mathcal{L} can be evaluated in polynomial time.
- **Extensional Completeness:** Every TM computing a function in FPTIME can be simulated by means of a proof/program in \mathcal{L} .

Characterizing the class FPTIME

Extensional Completeness does not say anything about the expressivity of \mathcal{L} . For instance:

Characterizing the class FPTIME

Extensional Completeness does not say anything about the expressivity of \mathcal{L} . For instance:

Intensional Completeness: The Logic \mathcal{L} captures all the FPTIME proofs of \mathcal{L}_1 .

Characterizing the class FPTIME

Extensional Completeness does not say anything about the expressivity of \mathcal{L} . For instance:

Intensional Completeness: (Usually undecidable!) The Logic \mathcal{L} captures all the FPTIME proofs of \mathcal{L}_1 .

FPTIME

□ FPTIME is the class of functions (and not only decision problems) computable in polynomial time by a deterministic Turing Machine.

FPTIME

- □ FPTIME is the class of functions (and not only decision problems) computable in polynomial time by a deterministic Turing Machine.
- □ Intuitively, FPTIME is the class of programs obtained by permitting arbitrary compositions of polynomial iterations.

$$r(x) \circ q(x) = p(x)$$
 $\underbrace{p(x) \circ p(x) \circ \cdot \circ p(x)}_{x-\text{times}} = e(x)$

FPTIME

- □ FPTIME is the class of functions (and not only decision problems) computable in polynomial time by a deterministic Turing Machine.
- □ Intuitively, FPTIME is the class of programs obtained by permitting arbitrary compositions of polynomial iterations.

$$r(x) \circ q(x) = p(x) \qquad \underbrace{p(x) \circ p(x) \circ \cdot \circ p(x)}_{x-\text{times}} = e(x)$$

Recurrent idea: Allows definitions by iteration of polynomials but forbids dangerous iterations of polynomials.

System	Soundness	Extensional Completeness	Intensional Completeness	Decidability
Bounded Recursion on Notation	X	X	X	
Predicative Recursion on Notation	X	X		X
Light Affine Logic	X	Χ		X
Bounded Linear Logic	X	X	\approx	

First approach: Bounded Recursion on notation

The first implicit characterization of FPTIME [Cobham65] uses BRN:

$$f(\epsilon, \vec{y}) = g(\vec{y})$$

$$f(\mathbf{0}x, \vec{y}) = h_0(x, \vec{y}, f(x, \vec{y}))$$

$$f(\mathbf{1}x, \vec{y}) = h_1(x, \vec{y}, f(x, \vec{y}))$$

$$f(x, \vec{y}) \leq k(x, \vec{y})$$

with a smash function $x \# y = \underbrace{\mathbf{10} \cdots \mathbf{0}}_{|x| \cdot |y|}$ and few other basic functions.

First approach: Bounded Recursion on notation

The first implicit characterization of FPTIME [Cobham65] uses BRN:

$$f(\epsilon, \vec{y}) = g(\vec{y})$$

$$f(\mathbf{0}x, \vec{y}) = h_0(x, \vec{y}, f(x, \vec{y}))$$

$$f(\mathbf{1}x, \vec{y}) = h_1(x, \vec{y}, f(x, \vec{y}))$$

$$f(x, \vec{y}) \leq k(x, \vec{y})$$

with a smash function $x \# y = \underbrace{\mathbf{10} \cdots \mathbf{0}}_{|x| \cdot |y|}$ and few other basic functions.

Pros:

- + No explicit machine model.
- + Very expressive.

Cons:

- The bound is not really implicit.
- The bound is difficult to check (undecidable!).

Second approach: Predicative Recursion on notation

Another approach is by using PRN [Bellantoni& Cook91,Leivant91]:

$$\begin{aligned} f(\epsilon, \vec{z} ; \vec{y}) &= g(\vec{z} ; \vec{y}) \\ f(\mathbf{0}x, \vec{z} ; \vec{y}) &= h_0(x, \vec{z} ; \vec{y}, f(x, \vec{z} ; \vec{y})) \\ f(\mathbf{1}x, \vec{z} ; \vec{y}) &= h_1(x, \vec{z} ; \vec{y}, f(x, \vec{z} ; \vec{y})) \end{aligned}$$

Every function $f(\vec{x}; \vec{y})$ has normal arguments \vec{x} and safe arguments \vec{y} . Soundness: the result of an iteration cannot be a recurrence argument.

Second approach: Predicative Recursion on notation

Another approach is by using PRN [Bellantoni& Cook91,Leivant91]:

$$\begin{aligned} f(\epsilon, \vec{z} ; \vec{y}) &= g(\vec{z} ; \vec{y}) \\ f(\mathbf{0}x, \vec{z} ; \vec{y}) &= h_0(x, \vec{z} ; \vec{y}, f(x, \vec{z} ; \vec{y})) \\ f(\mathbf{1}x, \vec{z} ; \vec{y}) &= h_1(x, \vec{z} ; \vec{y}, f(x, \vec{z} ; \vec{y})) \end{aligned}$$

Every function $f(\vec{x}; \vec{y})$ has normal arguments \vec{x} and safe arguments \vec{y} . **Soundness:** the result of an iteration cannot be a recurrence argument. Pros:

- + The bound is no more explicit.
- + Simple syntactic criterion.

Cons:

- Poor expressivity.
- Inherently first order.

Stratification

Light Logics for Polynomial Time Computations

April 3th 2012 - 10 / 33

Through the proofs-as-programs correspondence Intuitionistic Logic with type fixpoints corresponds to a system of recursive types.

$$\frac{\Gamma \vdash \mathbb{N} : A \vdash \mathbb{A} : \Delta, \mathbb{X} : A \vdash \mathbb{M} : B}{\Gamma, \Delta \vdash \mathbb{M} [\mathbb{X}/\mathbb{N}]B} (cut)$$

$$\frac{\Gamma, \mathbb{X} : A \vdash \mathbb{M} : B \quad \mathbb{X} \notin FV(\Gamma)}{\Gamma \vdash \lambda \mathbb{X}.\mathbb{M} : A \Rightarrow B} (\Rightarrow R) \qquad \frac{\Gamma \vdash \mathbb{N} : A \quad \mathbb{X} : B, \Delta \vdash \mathbb{M} : C}{\mathbb{Y} : A \Rightarrow B, \Gamma, \Delta \vdash \mathbb{M} [\mathbb{Y}\mathbb{N}/\mathbb{X}] : C} (\Rightarrow L)$$

$$\frac{\Gamma \vdash \mathbb{M} : A}{\Gamma, \mathbb{X} : B \vdash \mathbb{M} : A} (w) \qquad \frac{\Gamma, \mathbb{X} : B, \mathbb{X} : B \vdash \mathbb{M} : A}{\Gamma, \mathbb{X} : B \vdash \mathbb{M} : A} (c)$$

$$\frac{\Gamma \vdash \mathbb{M} : A \quad A = B}{\Gamma \vdash \mathbb{M} : B} (= R) \qquad \frac{\Gamma, \mathbb{X} : A \vdash \mathbb{M} : C \quad A = B}{\Gamma, \mathbb{X} : B \vdash \mathbb{M} : C} (= L)$$

Light Logics for Polynomial Time Computations

April 3th 2012 – 11 / 33

For what follows it is instructive to look how $(\lambda x.xx)\lambda x.xx$ can be typed using the fixpoint $A = A \Rightarrow \bot$:

Remark: contraction is necessary.

April 3th 2012 – 12 / 33

Intuitionistic Linear Logic with fixpoints: ILL $_{\mu}$

$$\frac{1}{\mathbf{x}: A \vdash \mathbf{x}: A} (Ax) \qquad \frac{\Gamma \vdash \mathbb{N}: A \qquad \Delta, \mathbf{x}: A \vdash \mathbb{M}: B}{\Gamma, \Delta \vdash \mathbb{M}[\mathbb{N}/\mathbf{x}]: B} (cut)$$

$$\frac{\Gamma, \mathbf{x}: A \vdash \mathbf{M}: B \quad \mathbf{x} \notin FV(\Gamma)}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{M}: A \multimap B} \ (\multimap R) \quad \frac{\Gamma \vdash \mathbf{N}: A \quad \mathbf{x}: B, \Delta \vdash \mathbf{M}: C}{\mathbf{y}: A \multimap B, \Gamma, \Delta \vdash \mathbf{M}[\mathbf{y}\mathbf{N}/\mathbf{x}]: C} \ (\multimap L)$$

$$\frac{\Gamma \vdash \mathtt{M} : A \quad A = B}{\Gamma \vdash \mathtt{M} : B} \ (= R) \qquad \frac{\Gamma, \mathtt{x} : A \vdash \mathtt{M} : C \quad A = B}{\Gamma, \mathtt{x} : B \vdash \mathtt{M} : C} \ (= L)$$

$$\frac{!\Gamma \vdash \mathsf{M} : A}{!\Gamma \vdash \mathsf{M} : !A} (p) \qquad \frac{\Gamma, \mathsf{x} : B \vdash \mathsf{M} : A}{\Gamma, \mathsf{x} : !B \vdash \mathsf{M} : A} (d)$$
$$\frac{\Gamma \vdash \mathsf{M} : A}{\Gamma, \mathsf{x} : !B \vdash \mathsf{M} : A} (w) \qquad \frac{\Gamma, \mathsf{x} : !B, \mathsf{x} : !B \vdash \mathsf{M} : A}{\Gamma, \mathsf{x} : !B \vdash \mathsf{M} : A} (c)$$

Light Logics for Polynomial Time Computations

April 3th 2012 – 13 / 33

Obviously $(\lambda x.xx)\lambda x.xx$ is typable in ILL_{μ} by means of the type fixpoint $A = !A \rightarrow \bot$ (which is the usual translation of $A = A \Rightarrow \bot$).

Remark: contraction, promotion and dereliction are necessary.

The idea of Light Logics is to limit the power of the structural rules.

- \Box First idea: forbid contraction.
 - + Consistent Set theory with a full comprehension scheme.
 - Too weak for polynomial time.

The idea of Light Logics is to limit the power of the structural rules.

- □ First idea: forbid contraction.
 - + Consistent Set theory with a full comprehension scheme.
 - Too weak for polynomial time.
- □ Second idea: control the other structural rules:
 - i) Proof Stratification.
 - ii) Avoiding the monoidalness of !.

We can think to the promotion rule as a **box**:

and we say **depth** of a rule, the number of boxes containing it.

We can think to the promotion rule as a **box**:

and we say **depth** of a rule, the number of boxes containing it.

Non-stratification of a proof in Linear Logic.

The depth of any rule **can** change during the cut elimination.

 $!A \multimap !!A \qquad !A \multimap A \qquad !A \multimap !A \otimes !A \qquad !A_1 \otimes !A_2 \multimap !A$

If we remove the principles:

$|A \multimap ||A$ $|A \multimap A$

we have instead:

Stratification: The depth of any rule **cannot** change during the cut elimination.

If we remove the principles:

 $|A \multimap ||A$ $|A \multimap A$

we have instead:

Stratification: The depth of any rule **cannot** change during the cut elimination.

So, we can consider only the rules

$$\frac{\Gamma \vdash A}{!\Gamma \vdash !A} (\Box) \qquad \frac{!A, !A, \Gamma \vdash B}{!A, \Gamma \vdash B} (\nabla)$$

A cut elimination step at depth *i*:

- i) duplicate part of the proof at depth i + 1,
- ii) decrease the number of rules at depth i,
- iii) does not affect the depths j < i,
- iv) does not increase the global depth.

A cut elimination step at depth *i* can only:

- i) duplicate part of the proof at depth i + 1,
- ii) decrease the number of rules at depth i,
- iii) does not affect the depths j < i,
- iv) does not increase the global depth.

This can be iterated to obtain an exponential at each fixed depth i.

A cut elimination step at depth *i* can only:

- i) duplicate part of the proof at depth i + 1,
- ii) decrease the number of rules at depth i,
- iii) does not affect the depths j < i,
- iv) does not increase the global depth.

$$\frac{\frac{\Gamma, A \vdash C}{\Gamma \vdash A \multimap C}}{!\Gamma, \Delta, \Sigma \vdash B} \xrightarrow{\Delta \vdash A \quad C, \Sigma \vdash B} (cut) \xrightarrow{\Delta \vdash A \quad \Gamma, A \vdash C} (cut) \xrightarrow{C, \Sigma \vdash B} (cut) \xrightarrow{C, \Sigma \vdash B} (cut)$$

A cut elimination step at depth *i* can only:

- i) duplicate part of the proof at depth i + 1,
- ii) decrease the number of rules at depth i,
- iii) does not affect the depths j < i,
- iv) does not increase the global depth.

$$\frac{\frac{\Gamma, A \vdash C}{\Gamma \vdash A \multimap C}}{!\Gamma, \Delta, \Sigma \vdash B} \xrightarrow{\Delta \vdash A \quad C, \Sigma \vdash B} (cut) \mapsto \frac{\Delta \vdash A \quad \Gamma, A \vdash C}{\Delta, \Gamma \vdash C} (cut) \xrightarrow{C, \Sigma \vdash B} (cut)$$

A cut elimination step at depth *i* can only:

- i) duplicate part of the proof at depth i + 1,
- ii) decrease the number of rules at depth i,
- iii) does not affect the depths j < i,
- iv) does not increase the global depth.

Because of the **stratification!**

We can perform a **depth-by-depth** reduction:

- □ The duplication of boxes depending over (more than one) free variables allows exponential time normalization.
- □ Limiting this kind of behavior corresponds to reduce the complexity of the normalization to polynomial time.

$$\frac{\Gamma \vdash A \quad \Gamma \subseteq \{B\}}{!\Gamma \vdash !A} (p) \qquad \frac{!A, !A, \Gamma \vdash B}{!A, \Gamma \vdash B} (c) \qquad \frac{\Gamma, \Delta \vdash A}{\S\Gamma, !\Delta \vdash \SA} (d)$$

$$\frac{\Gamma \vdash A \quad \Gamma \subseteq \{B\}}{!\Gamma \vdash !A} (p) \qquad \frac{!A, !A, \Gamma \vdash B}{!A, \Gamma \vdash B} (c) \qquad \frac{\Gamma, \Delta \vdash A}{\S\Gamma, !\Delta \vdash \SA} (d)$$

The restriction on the (p) rule corresponds to rule out the law:

 $!A_1 \otimes \ldots \otimes !A_n \multimap !A$

The rules (d) corresponds to re-introduce a weak version of it:

 $!A_1 \otimes \ldots \otimes !A_n \multimap \S A$

Light Logics for Polynomial Time Computations

April 3th 2012 – 20 / 33

$$\frac{!A, !A, \Gamma \vdash B}{!A, \Gamma \vdash B} (c)$$

$$\boxed{\frac{\Gamma, \Delta \vdash A}{\S \Gamma, !\Delta \vdash \S A} (d)}$$

- \Box !-boxes ((p) rules) can be duplicated.
- \square §-boxes ((d) rules) cannot be duplicated

The size $|\Pi|_j$ of depth i < j becomes (at most) $|\Pi|_j^2$ at each round *i*.

April 3th 2012 – 21 / 33

We can perform a **depth-by-depth** reduction:

The size of the proof Π after the stratified reduction is bounded by:

 \Box d is the maximal depth of a rule in Π .

The same method can be used to reason about reduction steps, hence this gives a bound on the number of β -normalization steps.

 $O\left(|\Pi|^{2^d}\right)$

Note: in LAL, data types have a fixed depth. This means that the depth depends just on the program part, hence we can work in polynomial time.

We have addition and multiplication in LAL as:

 $add: \mathbf{N} \multimap \mathbf{N} \multimap \mathbf{N} \qquad mult: \mathbf{N} \multimap \mathbf{N} \multimap \S \mathbf{N}$

So, we can program a polynomial p(x) of degree d as:

 $\mathbf{p}:\mathbf{N}\multimap\S^{2d}\mathbf{N}$

We have addition and multiplication in LAL as:

add : $\mathbf{N} \multimap \mathbf{N} \multimap \mathbf{N}$ mult : $\mathbf{N} \multimap \mathbf{N} \multimap \S \mathbf{N}$

So, we can program a polynomial p(x) of degree d as:

 $\mathbf{p}: \mathbf{N} \multimap \S^{2d} \mathbf{N}$

Transition on Turing Machines (TM) can be programmed as:

 $\mathrm{tr}:\mathrm{TM}\multimap\mathrm{TM}$

We have addition and multiplication in LAL as:

add : $\mathbf{N} \multimap \mathbf{N} \multimap \mathbf{N}$ mult : $\mathbf{N} \multimap \mathbf{N} \multimap \S \mathbf{N}$

So, we can program a polynomial p(x) of degree d as:

 $\mathbf{p}: \mathbf{N} \multimap \S^{2d} \mathbf{N}$

Transition on Turing Machines (TM) can be programmed as:

 $tr:TM\multimap TM$

By some manipulations we can obtain FPTIME Turing machines as:

$$\mathbf{t}: \mathbf{W} \multimap \S^{2d+1} \mathbf{W}$$

Light Logics for Polynomial Time Computations

April 3th 2012 – 24 / 33

Lack of Expressivity

April 3th 2012 - 25 / 33

Back to Boundedness

Light Logics for Polynomial Time Computations

April 3th 2012 - 26 / 33

One of the earliest examples of a Linear Logic system capturing FPTIME. Formulas:

$$A ::= \alpha(p_1, \dots, p_n) \mid A \otimes A \mid A \multimap A \mid \forall \alpha.A \mid !_{x < p}A$$

The idea is very simple:

$$A_{x<5}A = A[0/x] \otimes \cdots \otimes A[4/x]$$

However, the technicalities are increased by the fact that p is in general a polynomial expression, e.g.

$$!_{x < y^2} A = A[0/x] \otimes \dots \otimes A[y^2 - 1/x]$$

This is however also it strength.

Rules:

$$\frac{\Gamma \vdash B}{\Gamma, !_{x < w} A \vdash B} (w) \qquad \frac{\Gamma, A[x := 0] \vdash B}{\Gamma, !_{x < 1 + w} A \vdash B} (d)$$

$$\frac{\Gamma, !_{x < p} A, !_{x < q} A[x := p + x] \vdash B}{\Gamma, !_{x < p + q + w} A \vdash B} (c)$$

$$\frac{!_{z < q_1(x)} A_1[y := v_1(x) + z], \dots, !_{z < q_n(x)} A_n[y := v_n(x) + z] \vdash B}{!_{y < v_i(p) + w_1} A_1, \dots, !_{y < v_n(p) + w_n} A_n \vdash !_{x < p} B} (p)$$

where $v_i(x) = \sum_{z < x} q_i(z)$.

Light Logics for Polynomial Time Computations

April 3th 2012 - 28 / 33

A source of inspiration: Bounded Linear Logic - 2

Bounded Linear Logic is sound and complete for FPTIME. Moreover it has some interesting properties.

A source of inspiration: Bounded Linear Logic - 2

Bounded Linear Logic is sound and complete for FPTIME. Moreover it has some interesting properties.

A source of inspiration: Bounded Linear Logic - 2

Bounded Linear Logic is sound and complete for FPTIME. Moreover it has some interesting properties.

□ The "bounding" part can be seen as a kind of extra-conditions. As an example:

$$\frac{\Gamma, !_{x < p}A, !_{x < q}A[x := p + x] \vdash B \quad p + q \le r}{\Gamma, !_{x < r}A \vdash B} \quad (c)$$

Computation

April 3th 2012 - 30 / 33

Light Type Systems

Stratified Light Logics have been used to design type systems:

Stratified Light Logics have been used to design type systems:

This approach is effective, flexible and robust:

- □ Type Inference usually decidable in polynomial time.
- □ Useful to characterize different complexity classes: FPTIME, ELEMENTARY, FPSPACE, FNPTIME, FEXPTIME.
- □ With minor modifications they are useful for: higher-order, different recursion schemes, control operators, multithreding and side effects.

Relative Complete Type Systems

Boundedness can be used in a slightly different way.

Relative Complete Type Systems

Boundedness can be used in a slightly different way.

- □ This approach can give a system that is relatively complete with respect to the solvability of the side conditions by an oracle.
- ☐ This gives a general method to analyze program complexity.
- □ A similar approach has been used in an interactive framework for the class LOGSPACE.

THANKS

Light Logics for Polynomial Time Computations

April 3th 2012 - 33 / 33