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� ICC aims at describing complexity classes without:

– explicit reference to a specific machine model
– without an explicit cost bound
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� ICC aims at describing complexity classes without:

– explicit reference to a specific machine model
– without an explicit cost bound

� It generally borrows techniques from Mathematical Logic :

– Recursion Theory, FPTIME = Predicative Recursion on Notation
– Structural Proof Theory, FPTIME = Bounded/Light Linear Logic
– Model Theory, FPTIME = PR Functions over Finite Structures

� Our approach:
Proofs as
Programs

Structural Proof
Theory

�� �� Functional
Programming



Characterizing the class FPTIME
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FPTIME is the class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

A Logic L characterizes FPTIME if:

� Soundness: Every proof/program in L can be evaluated in polynomial
time.

� Extensional Completeness: Every TM computing a function in
FPTIME can be simulated by means of a proof/program in L.
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Extensional Completeness does not say anything about the expressivity of
L. For instance:

FPTIME
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Intensional Completeness:
The Logic L captures all the FPTIME proofs of L1.
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Extensional Completeness does not say anything about the expressivity of
L. For instance:
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Intensional Completeness: (Usually undecidable!)
The Logic L captures all the FPTIME proofs of L1.
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� FPTIME is the class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.
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� FPTIME is the class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

� Intuitively, FPTIME is the class of programs obtained by permitting
arbitrary compositions of polynomial iterations.

r(x) ◦ q(x) = p(x) p(x) ◦ p(x) ◦ · ◦ p(x)︸ ︷︷ ︸
x-times

= e(x)
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� FPTIME is the class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

� Intuitively, FPTIME is the class of programs obtained by permitting
arbitrary compositions of polynomial iterations.

r(x) ◦ q(x) = p(x) p(x) ◦ p(x) ◦ · ◦ p(x)︸ ︷︷ ︸
x-times

= e(x)

� Recurrent idea: Allows definitions by iteration of polynomials but
forbids dangerous iterations of polynomials.
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System Soundness
Extensional

Completeness
Intensional

Completeness
Decidability

Bounded
Recursion

on Notation
X X X

Predicative
Recursion

on Notation
X X X

Light
Affine Logic

X X X

Bounded
Linear Logic

X X ≈



First approach: Bounded Recursion on notation
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The first implicit characterization of FPTIME [Cobham65] uses BRN:

f(ε, �y) = g(�y)
f(0x, �y) = h0(x, �y, f(x, �y))
f(1x, �y) = h1(x, �y, f(x, �y))
f(x, �y) ≤ k(x, �y)

with a smash function x#y = 10 · · · 0︸ ︷︷ ︸
|x|·|y|

and few other basic functions.
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The first implicit characterization of FPTIME [Cobham65] uses BRN:

f(ε, �y) = g(�y)
f(0x, �y) = h0(x, �y, f(x, �y))
f(1x, �y) = h1(x, �y, f(x, �y))
f(x, �y) ≤ k(x, �y)

with a smash function x#y = 10 · · · 0︸ ︷︷ ︸
|x|·|y|

and few other basic functions.

Pros:

+ No explicit machine model.
+ Very expressive.

Cons:

- The bound is not really implicit.
- The bound is difficult to check (undecidable!).



Second approach: Predicative Recursion on notation
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Another approach is by using PRN [Bellantoni& Cook91,Leivant91]:

f(ε, �z ; �y) = g(�z ; �y)
f(0x, �z ; �y) = h0(x, �z ; �y, f(x, �z ; �y))
f(1x, �z ; �y) = h1(x, �z ; �y, f(x, �z ; �y))

Every function f(�x ; �y) has normal arguments �x and safe arguments �y.
Soundness: the result of an iteration cannot be a recurrence argument.
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Another approach is by using PRN [Bellantoni& Cook91,Leivant91]:

f(ε, �z ; �y) = g(�z ; �y)
f(0x, �z ; �y) = h0(x, �z ; �y, f(x, �z ; �y))
f(1x, �z ; �y) = h1(x, �z ; �y, f(x, �z ; �y))

Every function f(�x ; �y) has normal arguments �x and safe arguments �y.
Soundness: the result of an iteration cannot be a recurrence argument.

Pros:

+ The bound is no more explicit.
+ Simple syntactic criterion.

Cons:

- Poor expressivity.
- Inherently first order.
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Stratification



Paradox as the worst complexity...
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Through the proofs-as-programs correspondence Intuitionistic Logic with
type fixpoints corresponds to a system of recursive types.

x : A � x : A
(Ax)

Γ � N : A ∆, x : A � M : B

Γ, ∆ � M[x/N]B
(cut)

Γ, x : A � M : B x /∈ FV (Γ)
Γ � λx.M : A ⇒ B

(⇒ R)
Γ � N : A x : B, ∆ � M : C

y : A ⇒ B, Γ, ∆ � M[yN/x] : C
(⇒ L)

Γ � M : A
Γ, x : B � M : A

(w)
Γ, x : B, x : B � M : A

Γ, x : B � M : A
(c)

Γ � M : A A = B
Γ � M : B

(= R)
Γ, x : A � M : C A = B

Γ, x : B � M : C
(= L)



Non termination is the worst use of resource
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For what follows it is instructive to look how (λx.xx)λx.xx can be typed
using the fixpoint A = A ⇒ ⊥:

x : A � x : A x : ⊥ � x : ⊥
x : A, x : A ⇒ ⊥ � xx : ⊥ (⇒ L)

x : A, x : A � xx : ⊥ (= L)

x : A � xx : ⊥ (c)

� λx.xx : A ⇒ ⊥ (⇒ R)

x : A � x : A x : ⊥ � x : ⊥
x : A, x : A ⇒ ⊥ � xx : ⊥ (⇒ L)

x : A, x : A � xx : ⊥ (= L)

x : A � xx : ⊥ (c)

� λx.xx : A ⇒ ⊥ (⇒ R)

� λx.xx : A
(= R)

� (λx.xx)λx.xx : ⊥ (cut)

Remark: contraction is necessary.



Intuitionistic Linear Logic with fixpoints: ILLµ
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x : A � x : A
(Ax)

Γ � N : A ∆, x : A � M : B

Γ, ∆ � M[N/x] : B
(cut)

Γ, x : A � M : B x /∈ FV (Γ)
Γ � λx.M : A � B

(� R)
Γ � N : A x : B, ∆ � M : C

y : A � B, Γ, ∆ � M[yN/x] : C
(� L)

Γ � M : A A = B
Γ � M : B

(= R)
Γ, x : A � M : C A = B

Γ, x : B � M : C
(= L)

!Γ � M : A
!Γ � M :!A

(p)
Γ, x : B � M : A

Γ, x :!B � M : A
(d)

Γ � M : A
Γ, x :!B � M : A

(w)
Γ, x :!B, x :!B � M : A

Γ, x :!B � M : A
(c)



Non termination in ILLµ
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Obviously (λx.xx)λx.xx is typable in ILLµ by means of the type fixpoint
A =!A � ⊥ (which is the usual translation of A = A ⇒ ⊥).

x :!A � x :!A x : ⊥ � x : ⊥
x!A, x :!A � ⊥ � xx : ⊥ (� L)

x!A, x : A � xx : ⊥ (= L)

x!A, x :!A � xx : ⊥ (d)

x :!A � xx : ⊥ (c)

� λx.xx :!A � ⊥ (� R)

x :!A � x :!A x : ⊥ � x : ⊥
x1!A, x2 :!A � ⊥ � xx : ⊥ (� L)

x!A, x : A � xx : ⊥ (= L)

x!A, x :!A � xx : ⊥ (d)

x :!A � xx : ⊥ (c)

� λx.xx :!A � ⊥ (� R)

� λx.xx : A
(= R)

� λx.xx :!A
(p)

� (λx.xx)λx.xx : ⊥ (cut)

Remark: contraction, promotion and dereliction are necessary.
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The idea of Light Logics is to limit the power of the structural rules.

� First idea: forbid contraction.

+ Consistent Set theory with a full comprehension scheme.
- Too weak for polynomial time.
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The idea of Light Logics is to limit the power of the structural rules.

� First idea: forbid contraction.

+ Consistent Set theory with a full comprehension scheme.
- Too weak for polynomial time.

� Second idea: control the other structural rules:

i) Proof Stratification.
ii) Avoiding the monoidalness of !.
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We can think to the promotion rule as a box:

...
!Γ � M : A
!Γ � M :!A

and we say depth of a rule, the number of boxes containing it.
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We can think to the promotion rule as a box:

...
!Γ � M : A
!Γ � M :!A

and we say depth of a rule, the number of boxes containing it.

Non-stratification of a proof in Linear Logic.

The depth of any rule can change during the cut elimination.

!A �!!A !A � A !A �!A⊗!A !A1⊗!A2 �!A
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If we remove the principles:

!A �!!A !A � A

we have instead:

Stratification: The depth of any rule cannot change during the cut
elimination.
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If we remove the principles:

!A �!!A !A � A

we have instead:

Stratification: The depth of any rule cannot change during the cut
elimination.

So, we can consider only the rules

Γ � A
!Γ �!A

(�)
!A, !A, Γ � B

!A, Γ � B
(∇)



Reduction at depth i

Light Logics for Polynomial Time Computations April 3th 2012 – 17 / 33

A cut elimination step at depth i:

i) duplicate part of the proof at depth i + 1,
ii) decrease the number of rules at depth i,
iii) does not affect the depths j < i,
iv) does not increase the global depth.
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A cut elimination step at depth i can only:

i) duplicate part of the proof at depth i + 1,
ii) decrease the number of rules at depth i,
iii) does not affect the depths j < i,
iv) does not increase the global depth.

Γ � A
!Γ �!A

∆, !A, !A � B

∆, !A � B
(∇)

!Γ, ∆ � B
(cut) 	→

Γ � A
!Γ �!A

Γ � A
!Γ �!A ∆, !A, !A � B

!Γ, ∆, A � B
(cut)

!Γ, !Γ, ∆ � B
(cut)

!Γ, ∆ � B
(∇)

This can be iterated to obtain an exponential at each fixed depth i.
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A cut elimination step at depth i can only:

i) duplicate part of the proof at depth i + 1,
ii) decrease the number of rules at depth i,
iii) does not affect the depths j < i,
iv) does not increase the global depth.

Γ, A � C

Γ � A � C

∆ � A C,Σ � B

∆, A � C,Σ � B

!Γ, ∆, Σ � B
(cut) 	→

∆ � A Γ, A � C

∆, Γ � C
(cut)

C,Σ � B

∆, Γ, Σ � B
(cut)
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A cut elimination step at depth i can only:

i) duplicate part of the proof at depth i + 1,
ii) decrease the number of rules at depth i,
iii) does not affect the depths j < i,
iv) does not increase the global depth.

Γ, A � C

Γ � A � C

∆ � A C,Σ � B

∆, A � C,Σ � B

!Γ, ∆, Σ � B
(cut) 	→

∆ � A Γ, A � C

∆, Γ � C
(cut)

C,Σ � B

∆, Γ, Σ � B
(cut)



Reduction at depth i
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A cut elimination step at depth i can only:

i) duplicate part of the proof at depth i + 1,
ii) decrease the number of rules at depth i,
iii) does not affect the depths j < i,
iv) does not increase the global depth.

Because of the stratification!



Stratified Reduction
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We can perform a depth-by-depth reduction:

|Π|0 |Π|0 |Π|0 |Π|0 |Π|0
|Π|1 →∗

0 2|Π|1 2|Π|1 2|Π|1 2|Π|1

|Π|2 2|Π|2 →∗
1 22|Π|2

22|Π|2
22|Π|2

|Π|3 2|Π|3 22|Π|3 →∗
2 222|Π|3

222|Π|3

...
...

|Π|d 2|Π|d 22|Π|d
222|Π|d

· · · 2. .
.
22|Π|d



The exponential blow-up
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Most complex element Most complex element reduced

→ →

� The duplication of boxes depending over (more than one) free
variables allows exponential time normalization.

� Limiting this kind of behavior corresponds to reduce the complexity
of the normalization to polynomial time.



Light Affine Logic
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Γ � A Γ ⊆ {B}
!Γ � !A

(p)
!A, !A, Γ � B

!A, Γ � B
(c)

Γ, ∆ � A

§Γ, !∆ � §A (d)
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Γ � A Γ ⊆ {B}
!Γ � !A

(p)
!A, !A, Γ � B

!A, Γ � B
(c)

Γ, ∆ � A

§Γ, !∆ � §A (d)

The restriction on the (p) rule corresponds to rule out the law:

!A1 ⊗ . . .⊗!An �!A

The rules (d) corresponds to re-introduce a weak version of it:

!A1 ⊗ . . .⊗!An � §A



Light Affine Logic
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Γ � A Γ ⊆ {B}
!Γ � !A

(p)
!A, !A, Γ � B

!A, Γ � B
(c)

Γ, ∆ � A

§Γ, !∆ � §A (d)

� !-boxes ((p) rules ) can be duplicated.
� §-boxes ((d) rules) cannot be duplicated



A sketch of LAL soundness - 1
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The size |Π|j of depth i < j becomes (at most) |Π|2j at each round i.



A sketch of LAL soundness - 2
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We can perform a depth-by-depth reduction:

|Π|0 |Π|0 |Π|0 |Π|0 |Π|0
|Π|1 →∗

0 (|Π|1)2 (|Π|1)2 (|Π|1)2 (|Π|1)2

|Π|2 (|Π|2)2 →∗
1 ((|Π|2)2)2 ((|Π|2)2)2 ((|Π|2)2)2

|Π|3 (|Π|3)2 ((|Π|3)2)2 →∗
2 (((|Π|3)2)2)2 (((|Π|3)2)2)2

...
...

|Π|d (|Π|d)2 ((|Π|d)2)2 (((|Π|d)2)2)2 · · · (((|Π|d)2)2 · · · )2



A sketch of LAL soundness - 3
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The size of the proof Π after the stratified reduction is bounded by:

O
(
|Π|2d

)

� d is the maximal depth of a rule in Π.

The same method can be used to reason about reduction steps, hence this
gives a bound on the number of β-normalization steps.

Note: in LAL, data types have a fixed depth. This means that the depth
depends just on the program part, hence we can work in polynomial time.



A sketch of LAL Completeness
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� We have addition and multiplication in LAL as:

add : N � N � N mult : N � N � §N

So, we can program a polynomial p(x) of degree d as:

p : N � §2dN
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� We have addition and multiplication in LAL as:

add : N � N � N mult : N � N � §N

So, we can program a polynomial p(x) of degree d as:

p : N � §2dN

� Transition on Turing Machines (TM) can be programmed as:

tr : TM � TM
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� We have addition and multiplication in LAL as:

add : N � N � N mult : N � N � §N

So, we can program a polynomial p(x) of degree d as:

p : N � §2dN

� Transition on Turing Machines (TM) can be programmed as:

tr : TM � TM

� By some manipulations we can obtain FPTIME Turing machines as:

t : W � §2d+1W



Lack of Expressivity
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FPTIME
LL2 proofs

LL2 • QuickSort
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Back to Boundedness



Bounded Linear Logic - 1
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One of the earliest examples of a Linear Logic system capturing FPTIME.
Formulas:

A ::= α(p1, . . . , pn) | A ⊗ A | A � A | ∀α.A | !x<pA

The idea is very simple:

!x<5A = A[0/x] ⊗ · · · ⊗ A[4/x]

However, the technicalities are increased by the fact that p is in general a
polynomial expression, e.g.

!x<y2A = A[0/x] ⊗ · · · ⊗ A[y2 − 1/x]

This is however also it strength.



Bounded Linear Logic - 2

Light Logics for Polynomial Time Computations April 3th 2012 – 28 / 33

Rules:
Γ � B

Γ, !x<wA � B
(w)

Γ, A[x := 0] � B

Γ, !x<1+wA � B
(d)

Γ, !x<pA, !x<qA[x := p + x] � B

Γ, !x<p+q+wA � B
(c)

!z<q1(x)A1[y := v1(x) + z], . . . , !z<qn(x)An[y := vn(x) + z] � B

!y<vi(p)+w1
A1, . . . , !y<vn(p)+wnAn �!x<pB

(p)

where vi(x) =
∑

z<x qi(z).



A source of inspiration: Bounded Linear Logic - 2
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Bounded Linear Logic is sound and complete for FPTIME.

Moreover it has some interesting properties.
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Bounded Linear Logic is sound and complete for FPTIME.

Moreover it has some interesting properties.

FPTIME
LL2 proofs

LL2
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A source of inspiration: Bounded Linear Logic - 2
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Bounded Linear Logic is sound and complete for FPTIME.

Moreover it has some interesting properties.

� The “bounding” part can be seen as a kind of extra-conditions. As an
example:

Γ, !x<pA, !x<qA[x := p + x] � B p + q ≤ r

Γ, !x<rA � B
(c)



Light Logics for Polynomial Time Computations April 3th 2012 – 30 / 33

Computation



Light Type Systems
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Stratified Light Logics have been used to design type systems:

Type System �� ��

Type
Inference

��

Light Logic
��

��

Complexity Class
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Stratified Light Logics have been used to design type systems:

Type System �� ��

Type
Inference

��

Light Logic
��

��

Complexity Class

This approach is effective, flexible and robust:

� Type Inference usually decidable in polynomial time.

� Useful to characterize different complexity classes: FPTIME,
ELEMENTARY, FPSPACE, FNPTIME, FEXPTIME.

� With minor modifications they are useful for: higher-order, different
recursion schemes, control operators, multithreding and side effects.



Relative Complete Type Systems
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Boundedness can be used in a slightly different way.
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Boundedness can be used in a slightly different way.

Type System �� ��
��

Type
Inference

��

Light Logic
��

��

Constraint Logic ��

Side Condition
Resolution �� Complexity Class

� This approach can give a system that is relatively complete with
respect to the solvability of the side conditions by an oracle.

� This gives a general method to analyze program complexity.

� A similar approach has been used in an interactive framework for the
class LOGSPACE.
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