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|mplicit Computational Complexity: Motivations

O |1CC ams at describing complexity classes without:

— explicit reference to a specific machine model
— without an explicit cost bound
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O |1CC ams at describing complexity classes without:

— explicit reference to a specific machine model
— without an explicit cost bound

O It generally borrows techniques from Mathematical Logic :

— Recursion Theory, FPTIME = Predicative Recursion on Notation
— Structural Proof Theory, FPTIME = Bounded/Light Linear Logic
— Mode Theory, FPTIME = PR Functions over Finite Structures
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|mplicit Computational Complexity: Motivations

O |1CC ams at describing complexity classes without:

— explicit reference to a specific machine model
— without an explicit cost bound

O It generally borrows techniques from Mathematical Logic :

— Recursion Theory, FPTIME = Predicative Recursion on Notation
— Structural Proof Theory, FPTIME = Bounded/Light Linear Logic
— Mode Theory, FPTIME = PR Functions over Finite Structures

O  Our approach:
Proofs as
Programs

Structural Proof | ) Functional
Theory Programming
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CharacterizingtheclassFPTIME

FPTIME isthe class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

A Logic £ characterizes FPTIME if:

O Soundness. Every proof/program in £ can be evaluated in polynomial
time.

0 Extensional Completeness: Every TM computing a function in
FPTIME can be simulated by means of a proof/program in L.
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CharacterizingtheclassFPTIME

Extensional Completeness does not say anything about the expressivity of
L. For instance:

- “FPTIME™ ~ _
L, proofs
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CharacterizingtheclassFPTIME

Extensional Completeness does not say anything about the expressivity of
L. For instance:

- “FPTIME™ ~ _
L, proofs

|ntensional Completeness. (Usually undecidable!)
The Logic £ captures all the FPTIME proofs of ;.
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FPTIME

O FPTIME isthe class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.
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FPTIME

O FPTIME isthe class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

O Intuitively, FPTIME isthe class of programs obtained by permitting
arbitrary compositions of polynomial iterations.

r(z)oq(z) =p(z)  plz)o p({), o-op(x) = e(x)

x-times
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FPTIME

O FPTIME isthe class of functions (and not only decision problems)
computable in polynomial time by a deterministic Turing Machine.

O Intuitively, FPTIME isthe class of programs obtained by permitting
arbitrary compositions of polynomial iterations.

r(z)oq(z) =p(xr)  plx)op(x)o-op(x)=ec(z)

\ . J

~

x-times

O Recurrent idea: Allows definitions by iteration of polynomials but
forbids dangerous iterations of polynomials.
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Road-map

Extensional | ntensional . -
System Soundness Completeness Completeness Decidability
Bounded
Recursion X X X
on Notation
Predicative
Recursion X X X
on Notation
Light
Affine Logic X X X
Bounded X X ~
Linear Logic
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First approach: Bounded Recursion on notation

Thefirst implicit characterization of FPTIME [Cobham65] uses BRN:

f(e )
f(0z,9)
f(1z,9)

f(z,9)

with a smash function x#y = 10 - - - 0 and few other basic functions.
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First approach: Bounded Recursion on notation

Thefirst implicit characterization of FPTIME [Cobham65] uses BRN:

fle,9)
f(0z, 7))
f(1z,y)
flz, )

A

with a smash function x#y = 10 - - - 0 and few other basic functions.

Pros:

+ No explicit machine model.

+ Very expressive.
Cons:

- The bound is not really implicit.

j]-[y]

- The bound is difficult to check (undecidable!).
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Second approach: Predicative Recursion on notation

Another approach is by using PRN [Bellantoni& Cook91,L eivant91]:

fle,Z59) = g(Z59)
fOx,Z59) = ho(x, 259, f(2,25%))
fAz,Z259) = hi(z, 257 (,5;5))

Every function f(z ; /) has normal arguments ' and safe arguments 4.
Soundness. the result of an iteration cannot be a recurrence argument.
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Second approach: Predicative Recursion on notation

Another approach is by using PRN [Bellantoni& Cook91,L eivant91]:

fle,Z59) = g(Z59)
fOx,Z59) = ho(x, 259, f(2,25%))
fAz,Z259) = hi(z, 257 (,5;5))

Every function f(z ; /) has normal arguments ' and safe arguments 4.
Soundness. the result of an iteration cannot be a recurrence argument.

Pros:

+ Thebound is no more explicit.
+ Simple syntactic criterion.

Cons:

- Poor expressivity.
- Inherently first order.
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Stratification
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Paradox asthe wor st complexity...

Through the proofs-as-programs correspondence Intuitionistic Logic with
type fixpoints corresponds to a system of recursive types.

I'FN:A Ax:AFM: B

t
x: AFx: A (Az) I'yAFMx/N|B (cut)

Ix: AFM: B x¢ FV(I) (= R) I'-N:A x:BAFM:C (= )
I'-XxM: A= B y: A= B,I',AFMyN/x]:C
FM: A I'x:B,x:BFM: A
FaXIBl_MIA(w) I''x:BFM: A ()

''FM:A A=B , 'x:AFM:C A=B ,
I'-M: B (= R) I'x:BFM:C (=1)
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Non termination i1sthe wor st use of resource

For what followsit isinstructive to look how (Ax.xx)Ax.xx can be typed
using thefixpoint A = A = L:

x:AFx:A x:1lbFx: L

x:AFx: A XIJ_I—XIJ_<:>L) x: Ax: A= 1L Fzxx: J_((ZZ)L)
X:A,X:A:>J_|—XX:J_(:L) x:Ax: AF xx: J_()
X:f?};:I—AXI;}'QIL (€) I—X)\X?{XI_ le{:j_J_ (= 1)
: : (= R) (= R)

Fxxx: A= L
F (Ax.xx)Ax.xx @ L

I—AX.XX.A( )

Remark: contraction is necessary.
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Intuitionistic Linear Logic with fixpoints: ILL,

I'EFN:A A,X:AI—M:B( £)
T, A+ MN/x|: B o

x:AFx: A (Az)

I'x: AFM: B x¢ FV(I) R 'FN:A X:B,AI—M:C<
'FXxM:A—B (= B) y:A—o B,I', AFMyN/x|]:C

I'-FM: A A=2RB
I'-M: B

I'x:AFM:C A=BHB _7
I'x:BFM:C (=1)

(= R)

!FI—M:A<) F,X:BI—M:A(d
rruia®  Txigru.a @

FFM: A (w) F,X:!B,X:!BI—M:A()
I'x:!!BFM: A v I'x:!!BFM: A ¢
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Non termination in ILL ,

Obviously (Ax.xx)Ax.xx istypablein ILL , by means of the type fixpoint
A =!A — 1 (whichistheusual trandationof A = A = 1).

x:JAFx:1A X:J_I—X:J_(
x1!A, x0 A — L Fxx: L

(=1)

x:1AFx:1A X:J_I—X:J_(_OL) xIA,x: Ak xx: L
X!A,X:!A—OJ_I—XX:J_<:L) X!A,X:!AI—XX:J_(d)
XiA,X:AI—XX:J_M) 2 JAF %% - | (<—C<)>R)
x!A,x 1AFxx: L (0 - \x.xx 1A —o | (= R)
xJAFxx: L (—o R) I—)\X.XX:A(p>
F A Ax.xx JA — | - \x.xx 1A (cut)

- (Ax.xx)Ax.xx @ L

Remark: contraction, promotion and dereliction are necessary.
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TowardsLight Logics

Theideaof Light Logicsisto limit the power of the structural rules.
O Firstidea: forbid contraction.

+ Consistent Set theory with afull comprehension scheme.
- Too weak for polynomial time.
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TowardsLight Logics

Theideaof Light Logicsisto limit the power of the structural rules.
O Firstidea: forbid contraction.

+ Consistent Set theory with afull comprehension scheme.
- Too weak for polynomial time.

0 Second idea: control the other structural rules:

1) Proof Stratification.
1) Avoiding the monoidalness of !.
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Stratification

We can think to the promotion rule as abox:

T-M:A

T"-M:1A

and we say depth of arule, the number of boxes containing it.
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Stratification

We can think to the promotion rule as abox:

T-M:A
T-MIA

and we say depth of arule, the number of boxes containing it.

Non-stratification of a proof in Linear Logic.
The depth of any rule can change during the cut elimination.
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Stratification

If we remove the principles:
1A —!lA 1A — A

we have instead:

Stratification: The depth of any rule cannot change during the cut
elimination.
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Stratification

If we remove the principles:
1A —!lA 1A — A

we have instead:

Stratification: The depth of any rule cannot change during the cut
elimination.

S0, we can consider only the rules

re A IA'ATF B
(O)

T A Arrn V)
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Reduction at depth i

A cut elimination step at depth i:

1) duplicate part of the proof at depth: + 1,
1) decrease the number of rules at depth ;,
111) does not affect the depths j < 4,
IV) does not increase the global depth.
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Reduction at depth i

A cut elimination step at depth 7 can only:

1) duplicate part of the proof at depth + 1,
1) decrease the number of rules at depth ;,
111) does not affect the depths ; < 4,
IV) does not increase the global depth.

[EA| AMMEB o
CHA| AJAFB
T.AF B (cut)

T A

THA| A1AAF B
'~ A y <41 (cut)
T A TAAFB

!F,!F,AI—B(V) (cut)

T.AF B

This can be iterated to obtain an exponential at each fixed depth ;.
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Reduction at depth i

A cut elimination step at depth 7 can only:

1) duplicate part of the proof at depth: + 1,
1) decrease the number of rules at depth i,
111) does not affect the depths j < 4,
IV) does not increase the global depth.

T'A-C AFA CXFB AFA TARC
TFA—-C AA—-CXFB ATFC 4 cnEB
T AYED (cut) AT SFB (cut)
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Reduction at depth i

A cut elimination step at depth 7 can only:

1) duplicate part of the proof at depth: + 1,
1) decrease the number of rules at depth ;,
111) does not affect the depths 5 < «,
IV) does not increase the global depth.

T'AFC AFA CXFB AF A F,AI—C( t)
TFA -C AA-CYXFB ATFC 4 cxrB
T ASFD (cut) |, ATSFB (cut)
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Reduction at depth i

A cut elimination step at depth 7 can only:

1) duplicate part of the proof at depth: + 1,
1) decrease the number of rules at depth ;,
111) does not affect the depths ; < 4,
IV) does not increase the global depth.

Because of the stratification!
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Stratified Reduction

We can perform a depth-by-depth reduction:

1o 1T}o 1T}o 1T}o 1T}o
I, | —¢ oIy pJLdt pILdt pILdt
11, 9112 _>>1k 22|H|2 22|H|2 22|H|2
. 9113 9113
T, e 221 s | 92 22
jutp;

2|H|d 22|H|d 22

11, 2Mla 2 2 2
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The exponential blow-up

Most complex element Most complex element reduced

z

= - ..

O The duplication of boxes depending over (more than one) free
variables allows exponential time normalization.

O Limiting this kind of behavior corresponds to reduce the complexity
of the normalization to polynomial time.
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Light Affine Logic

T A FQ{B}( !A,!A,FI—B() T AR A @
T 1A P ATFB 9  §T.IAF A
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Light Affine Logic

T A FQ{B}( !A,!A,FI—B() T AR A @
T 1A P ATFB 9  §T.IAF A

Therestriction on the (p) rule corresponds to rule out the law:
1A ®...Q1A, —!A
Therules (d) corresponds to re-introduce a weak version of it:

14, ® ... ®A, —o §A
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Light Affine Logic

r'-A I C{B)

1A

()

IAVATF B

ATFB 9

0 !-boxes ((p) rules) can be duplicated.
0 8§-boxes ((d) rules) cannot be duplicated

T AFA

TRINETRL
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A sketch of LAL soundness- 1

=
(%]

Otmax{pjﬁ‘

O(max{p,r}?)

Thesize|Il|; of depth i < j becomes (at most) [11|; at each round i.
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A sketch of LAL soundness- 2

We can perform a depth-by-depth reduction:

1o 1I]o 1I]o
| =g | ()2 (I1],)?
] ()2 | =1 || ()22
I (|52 ((|T1]3)2)?
i, (I1],)? (1122

ITTo
(|T1]1)?
(([T1]2)%)?

5 || ((CT]5)%)%)*

(((ITTa)*))* | -~

1o

(1T
((11]2)*)*
(((ITT]3)*)*)"

()2 - )?

)2
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A sketch of LAL soundness- 3

The size of the proof II after the stratified reduction is bounded by:

o()

O disthe maximal depth of aruleinII.

The same method can be used to reason about reduction steps, hence this
gives a bound on the number of 5-normalization steps.

Note: in LAL, datatypes have afixed depth. This means that the depth
depends just on the program part, hence we can work in polynomial time.
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A sketch of LAL Completeness

O We have addition and multiplication in LAL as:
add : N —o N —o N mult : N — N — §N
So, we can program a polynomial p(x) of degree d as:

p: N — §%N
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A sketch of LAL Completeness

O We have addition and multiplication in LAL as:
add : N —o N —o N mult : N — N — §N
So, we can program a polynomial p(x) of degree d as:
p:N —o §2dN
O Transition on Turing Machines (TM) can be programmed as:

tr : TM —o TM
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A sketch of LAL Completeness

O We have addition and multiplication in LAL as:
add : N —o N —o N mult : N — N — §N
So, we can program a polynomial p(x) of degree d as:
p:N —o §2dN
O Transition on Turing Machines (TM) can be programmed as:

tr : TM —o TM

O By some manipulations we can obtain FPTIME Turing machines as:

t: W — §2'W
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L ack of Expressivity

- “"FPTIME™ ~ _
, L L, proofs N

e QuickSort
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Back to Boundedness
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Bounded Linear Logic- 1

One of the earliest examples of a Linear Logic system capturing FPTIME.
Formulas:
Ac=a(pr,...,pn) | ARA|A— A|Va.A| 1,.,A

Theideaisvery ssimple:
s A=A0/x] ® -+ ® Ald/x]

However, the technicalities are increased by the fact that p isin general a
polynomial expression, e.g.

oep A=A/ ® - @ Al — 1/

Thisis however aso it strength.
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Bounded Linear Logic - 2

Rules:
- B I'VAlx :=0|+ B
(w)

d
Fa !x<wA - B F ':1:<1—|—wA - B ( )

Iy A eciAle =p+2|F B (0
Fa !x<p+q+wA - B

@Ay =v(x) + 2], Leg @ Anly = vn(2) + 2] F B
|

p
y<vip)+un A1, ly<on@)tw, An Flacp B (p)

wherev;(z) = > . _. ¢i(2).
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A source of inspiration: Bounded Linear Logic - 2

Bounded Linear Logic is sound and complete for FPTIME.

Moreover it has some interesting properties.
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A source of inspiration: Bounded Linear Logic - 2

Bounded Linear Logic is sound and complete for FPTIME.
Moreover it has some interesting properties.

O The“bounding” part can be seen as akind of extra-conditions. Asan
example:

[y A oAl i =p+2|FB p+q<r ()
rL.«,AF B

Light Logics for Polynomia Time Computations April 3th 2012 -29/ 33



Computation
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Light Type Systems

Stratified Light Logics have been used to design type systems:

Type System ’(: Light Logic ‘

e

Inference Complexity Class ‘
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Light Type Systems

Stratified Light Logics have been used to design type systems:

Type System

Light Logic ‘

—

ﬂ

Inference

Complexity Class ‘

This approach is effective, flexible and robust:

O Type Inference usually decidable in polynomial time.

0 Useful to characterize different complexity classes. FPTIME,
ELEMENTARY, FPSPACE, FNPTIME, FEXPTIME.

O With minor modifications they are useful for: higher-order, different
recursion schemes, control operators, multithreding and side effects.
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Relative Complete Type Systems

Boundedness can be used in adightly different way.

Type System

Type
Inference

Constraint Logic

Side Condition

Resolution

Light Logic ‘

Complexity Class ‘
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Relative Complete Type Systems

Boundedness can be used in adightly different way.

Type System < . Light Logic ‘
Type
Inference
Side Condition
( Resolution )

Constraint Logic Complexity Class ‘

O Thisapproach can give asystem that is relatively complete with
respect to the solvability of the side conditions by an oracle.

O Thisgives ageneral method to analyze program complexity.

O A similar approach has been used in an interactive framework for the
class LOGSPACE.
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THANKS
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